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UNIT I:

Ordinary Differential Equations: Variable separable — Homogeneous Equation — Non-
Homogeneous Equations of first degree in two variables — Linear Equation — Bernoulli’s
Equation — Exact differential equations.

Chapter 1: Sections1.1- 1.6

Introduction:
A differential equation is an equation in which differential coefficients occurs.
Differential Equation are of two types
1. Ordinary
2. Partial
An Ordinary Differential Equations is one in which single independent variable enters, either
explicitly or implicitly
Example:
1) Z—Z = 2sinx
2) % +m?y =0
In (2) it must, be noted that there are & independent variables x and y and there is only one
independent variable t.

A PDE is one in which at least 2 independent variables enter and the partial differential

coefficients occurring in them have reference to any one of these variable

Example:
0z N 0z _
1) x(’)x y dy z

(922 )\ 0%z 9%z

i) (E)x 6y> ~ 9x? + a_yz

The Order of differential equation is the order of the highest derivative occurring in it.

The Degree of the differential equation is the degree of the highest derivative when the
differential coefficients are seared of radicals and fractions.

Example 1:

[1+ (dy/dx)?]2
d?y/dx?
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Order: 2

Degree: 2

Example 2:

d? dy\?

it (@) =

Order: 2

Degree: 1

Equation of the First order and of the First Degree:

1.1. Variables Separable:

suppose an equation is of the form f(x)dx + F(y)dy = 0 we can directly integrate this

equation and the solution is [ f(x)dx + [ F(y)dy = c where c is the arbitrary constant.

Example 1:
/2
dy (1-y%\'

Solve a + (1——362 =0
Solution:
Given

dy (1-y%\"/?

o(=Y) =o

dx 1—x2

dy 1—y?2 1/2
dx (1 —x2>
Jdy_[A=—yH
dx (1 —x2)1/2
dy —dx
= =
J1—-y% VJ1—x?

Integrating on both sides,

=>sin"ly=—sin"lx+c¢
=>sin“ly+sinTlx=¢

Example 2:
Solve ydx — xdy + 3x2y%e*’dx = 0

Solution:
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ydx — xdy + 3x2y%e* dx = 0

ydx — xdy

-.- y—z

= d(x/y) + 3x2e*’dx =0
=>d(x/y)+etdt =0

Integrating on both sides,

] d(x/y) +j etdt =0

+3x%2e*°dx =0

x/y + et = ¢c
x/y+ e*’ = ¢c
Example 3:

Solve e*tan ydy + (1 — e*)sec? ydy = 0
Solution:
e*tanydy + (1 — e*)sec? ydy = 0
e*tanydy = —(1 — e*)sec? ydy
e*tan ydx = (e* — 1)sec? ydy
e*dx _ sec’ ydy

eX—1  tany
d(e*—1) d(tany)
eX—1  tany

Integrating on both sides,

= logle* — 1| = log|tan y| + logc
taking e power on both side

= e* —1=ctany.

Example 4:

Solve x\/1 + y2 + yV1 + x2dy/dx =0

Solution:

x\J1+y2+yJ1+x2dy/dx =0

X1+ y?dx + yv1 + x%dy _ 0
dx

d
X1+ y?=—y 1+x2£

X1+ y2dx = —y\/1+ x2%dy
X1+ y2dx+yJ1+x2dy=0
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X\ 1+ y?dx = =y 1+ x?%dy xdx

VitxZ J1+y2

xdx  —ydy
Vitx? J1+y?
, v=1+ y?
ity — 2xax W=D
Take aw_ dv/2 =di//’2dy o
2 ==

Integrating on both sides,

] u2qy = —f v 124y

y-1/2+1 p-1/2+1
1241 —Az1°°€
w2z —p1/2

12-12 7€

Vi+x2=—/1+y%+c
Vi+xz+1+y2=c
Example 5:

Solve tany sec? xdx + tanx sec?ydy = 0
Solution:

tany sec? xdx + tan xsec? ydy = 0

tany sec? xdx = —tan xsec? ydy
sec?xdx _ sec?ydy 1)
tan x - tan y --------------

Letu =tanx v =tany

du = sec? xdx dv = sec? ydy

) du dv
From equation (1) Pyiinime
du dv
uw ) v
logu = —logv +logc
u=-v+c

tanx +tany = ¢

Example 6:
Solve V1 + x2dx + /1 + y2dy =0
Solution:
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Vv1+x2dx+1+y?dy=0

Integrating on both sides,

]\/1+x2dx+j J1+y2dy=0
2
]\/az+x2dx=E 2+xz+a—log(x+ x2+a2)

Ve 2
:"; 1+ x2 +%log(x+ x2+1)+% 1+y2+%log(y+\/m
:xm+ym+log(x+ x2+1)(y+m) = 2c
xm+ym+log(x+ x2+1)(y+m) =0
Example 7:
Solve y%cosvxdx — 2v/xeYdy =0
Solution:

y2cosvxdx — 2v/xe’Ydy = 0
y2cosVxdx = 2+/xe' /Y

cosvVxdx el/ywy

2V/x y?

Take

u=+/x v=1/y
1

du = Ex‘l/zdx dv = —y 17 1dy

1

du = ——=dx —dv = +1/y?%d

E: /y“dy

(1) = cosudu = e’dv
Integrating on both sides,
:>f cosudu = —f evdv

=sinu = —eV+c¢
sinVx + el =¢

Example 8:
N2 2
Solve (x — y) o =a
Solution:
d
(x—y)2£ =a? ... )

Put z=x-—y
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dx dx
dy_1 dz
dx dx
1) = 2(1 dz)— 2
D=z ) = ¢
dz_a2
dx 22
az_dz
72 dx
dz
dx——az
(1-%)
z%dz
dx=—22_a2
(z%2 —a? + a?)dz
dx = > >
z2—a
22 — a2 a2
dx:(zz—a2+zz—a2)dz
2
dx=dz + 5 2dz +c
z2—a

Integrating on both sides,

dz
:>fdx=fdz+azfﬁ
z2—a

x =z+ a? [ilog|z_a|+c]
2a z+a

= + 4 |x_y_a|+
x=x=y Zng—y+a ¢
a1 |x—y—a|_
y Zng—y+a_

1.2.Type B:Homogenous equation:

Consider & = 289 Q)
ax  f2(xy)

where f; and f, are homogenous functions of the same degree in x and y.
f (x,y) sean be written as x™¢ () and f; (x,y) as x™ (%)

If we put y = vx

—=v+x
dx

=~ The equation (1) becomes
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v x"¢p(v)

v+ Xa = x”z/)(v)
dv _ o)
v+ Xa = ll)(v)
The variables can be separated
xdv ¢ (v)
FZERITONM
x@ _—(w@) - o))
dx Y(v)
Yy(w)dv  —dx

MTOET G

Integrating on both sides,

Y(v)dv _
- | Sper gy ot
Y(w)dv
= logx +

) —p)

The solution is got by sub % for v after the integration is over

Example 1:

2 4,29 _
Solve y* + x XY
Solution:

dy dy

2 220 e
yorx dx xydx
:>x2d—y—x Dy
dx ydx y

dy
a(xz —xy) = —y?

ay _ -y

dx - (xz_xy) ............ (1)
Puty = vx

dy dv

E =v+ Xa

~ (1) becomes,

10
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dv v x?

I i ——

dv  x*v?
””E‘xzw—n
dv = v?

‘o T v—1 "

dv v?—v%2+v
"E= v—1
dv v

xa=v—1
(v—1dv dx

v X

Lygy = &
(1-D)dv =2

Integrating on both sides,
dv dx
Jav-[Z= [
v X

= v—logv=1logx +c
logx + logv —v = —c (-C=¢y)

logxv —v =c
N

] )L =

ng(x) X €1

lo —}—]=c

gy X 1

Taking e power

Y
e(108Y—3) — a1

1 i
e%8Yex =

-y
yex =¢
Example 2:

Solve (y? — 2xy)dx = (x? — 2xy)dy

11
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Solution:
Given (y? — 2xy)dx = (x? — 2xy)dy

ay _ (v*-2xy)
i = iy (1)

Puty = vx
dy dv
a—v+xd—

dv  v?x?-2vx?
N vd+x —=——7"""—
( ) dx x2-2x2v

N dv  v?x? — 2vx?
VX —=—————
dx x2—2x%v

N dv _ x*(v* —2v)
v de_ x2 —2x%v

dv v—2v
:x—z( )—v

dx 1-2v
dv v? —=2v—v+ 2v?
> — =
xdx 1-2v
dv_3v2—3v
xdx_ 1-2v
dv(l—-2v) dx
— = . (2)
3(v2 —v) x

Take t = v? —v

dt = (2v—1)dv
—dt = (1 - 2v)dv

—dt dx
T
Integrating on both sides,
—dt dx
3t ) x

1
—§logt = logx +logc

1
log x +§logt = logc

1
logx + §log(v2 —v) =logc

log(x(v? — v)1/3) = logc
12
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Taking e power in both sides,

x(v? —v)V3 =¢

(yz y>1/3
x|\=-=] =c
x? x

Example 3:
Solve (x2 + y?) dy/dx = xy
Solution:
; 2 2\ _
Given (x* +y )dx = xy
=~ This is the homogenous equation of degree 2

dy Xy

dx ~ (x2 +y2)

dy x*(y | x)
dx x2(1 4+ y? | x2)

Put,y = vx
dy dv
a—U+Xa
N av vx/x
v xdx_1+v2x2/x2
dv_ v
dx 1+ v?
dv_v—v3
dx 1+ v?
dv_ 31 4 2
xdx_ ve/ v
1+ v? dx
dv T =——
v X

0(1/v3® +v?/v3) = —dx/x
(1/v3 +1/v) = —dx/x

Integrating on both sides,

13
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=>f v‘3dv+f 1/vdv = —
v—2
= — +logv = —logx +logc

dx
X

= —1/2v% + logv + logx = logc

—1/2v? + logvx = logc

—1/2y?%/x? +logy/xxx = logc

—x2log? + logy = logc
Taking e powen on b.s,

e—xz/ZyZelogy =c
ye /2 = ¢
Example 4:
Solve (x + y)2dx = 2x2dy
Solution:
Given (x +y)%dx = 2x3dy

dv  x%(1+ v)?
U+Xa:—2x2
dv  (1+v)?
U+XE:T
dv 1+v?+2v
Yax T 2
dv 1+v?>+2v—2v
Yax T 2
dv 1+v?
Yax T 2
dx
2dv/1 + v? =

-V

Integrating on both sides,

14
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1+ v? x
2tan"1(v) = logx + ¢
logx — 2tan"'(v) +c =0
logx —2tan"Y(y |x) + ¢, =0
logx — 2tan1(y/x) = ¢;

dv dx
zf e

1.3. Type C: Non-homogenous equations of first degree in x and y:
Consider (ax + by + ¢)dy/dx = Ax+By+C ............. (D)
Where a, b, ¢, A, B, C ane constants
Putx=x+h &y=y+k

dx =dx &dy = dy

~ (D= (ax+ah+by+bk+c)%=Ax+Ah+By+Bk+C

> (ax+by+ah+bk+c)%=Ax+By+Ah+BK+C v ere e e (2)
If h, k be chosen to satisfy
ah+bk+c=0.............. 3)
AR+ Bk+c=0...ccc...... (4)
(2) = (ax + by)z—z =Ax+By ...c......... ®))

This is homogenous in x and y can be solved by putting

y = vx

Note 1:

The above solution succeeds only if h&k can be found from (3) & (4)
(ie)ifa/A+b/B

Note 2:

If% = g and % be different from reach of these fractions, h & k cannot be obtained from (5)

& (4)

=~ Hence the following method is adopted Put% = % = %

ma=4,bm =B
~ (1) = (ax + by + c)dy/dx = (max + mby + C)
Put ax + by =v
dy dv dy dv dy dv/dx—a
A AR il T e
15
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dv/d _mv+c
y/dx = v+c
dv
b= mv+c
b v+c
dv (mv+c>
>——q=
dx v+c
dv (mv+c>
—=qa
dx v+c

The variables separated.
Hence the solution is

v b(mc —c)
a+bm (a+ bm)?

Note 3:

log(v(a + bm) + ac + bc) =x + ¢,

b . . d
If£=2=2.theequationis =< = m
A B Cc dx

>y=mx+c
Example 1:

d x+2y-3
Solve & =222
dx 2x+y-3

Solution:

dy _ x+2y-3

Given =
dx 2x+y-3
Put

x=x+h ;y=y+k
dx =dx ;dy=dy

dy x+h+2y+2k—-3

(1):>E_2x+2h+y+k—3
Consider h + 2k —3=0........... 3)
2h+k—-3=0 ............. @))
Equation (3) & (4) solve

k =1in(3)

“h=1

x=x+1=2>x=x-1
y=y+l=y=y-1

16
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This is a homogenous equation
y = vx

~ Puta d
Utdy _ ) 4 522
dx dx

dv X+2vx
SV+x—=
. (5) dx 2x+vx
° v+ xd_v _ x(1+2v)
dx x(2+v)

dv 1+2V
"a=(z+v>‘

dv 1+ 2v—2v—v?
=”‘E= 24+v

dv 1-—v2
xE=2+v

3 1 1 1 dx
:)(51—v+§1+v>dv=7
Integrating on both sides,

3 1
—Elog(l -v)+ Elog(l +v) =logx + logc
log(1—v)7%/2 + log(1 + v)*/? = logcx
log(1—v)"%/2 — (1 + v)¥/? = logcx
Taking e power on both sides,
=1 -v)32A+v)/?2=cx
squaring on both sides
(1—=v)3(1 +v) = c?x?
(1+v)=c?x%?(1 +v)3
(1+y/x)=c*x*(1 —y/x)?
x+y L (x—y)?
X X
(x+y)=c*(x—y)’
x—14+4y—-1D=c*(x-1-(y-1))3
(x+y—-2)=c*(x—-1-y+1)3
(x+y—2)=c*(x—y)’
Example 2:
Solve (2x — 4y +3) 2 + (x =2y +1) =0
Solution:
Given, (2x — 4y + 3)dy/dx+ (x—2y+1) =0

17
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v=x—2y
w=20-%
1H=>C2v+3)(1/2-1/2dv/dx)+ (v+1)=0

2v 2vdv3 3dv

7 2dx2 zaxtVTIE0

vdv-2 3 3dv

2dx T2 zax TV

(2v+5/2)—1/2dv/dx(2v+3) =0
4v+5 1dv
5 ———(Zv +3)=0
4v +5— dv/dx(Zv +3)=0
(4v+5)dx— 2v+3)dv=0

ax— 203 0o 2
X A0 +5 vV=0........ ... (2)

Put,

Put, t=4v+5:v=?

dt
dt=4dv:dv=z

@ =dx— (*2+3)% =0

t—5+6
AL Y
8t

t+1
e u=o
8t
d ! dt =10
X(—g; ) =

Integrating on both sides,

1 dt+dt =0
x 8[ t]_

1
x—g[t+logt] =0
1
x—g[(4v+ 5) +log(4v+5)] =c¢
1 1
:,~x—§(4(x—2y)+5)—§log(4(x—2y)+5) =c
1 1
:,~x+c=—((4x—8y)+5)+§log(4x—8y+5)
(4x — 8y)

:>x+c—T §+§log(4x—8y+5)
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8x +4x + 8y 15 1
T+c—§=§log(4x—8y+5)

4x + 8y 1
3 +c = glog(4(x —2y)+5))
(4x +8y) + ¢, =log(4(x — 2y) +5)

Example 3:

d 10x+8y—12
Solve o + TS o 0
dx 7x+5y—9

Solution:
dy 10x+8y—12

Given —+
dx 7x+5y—9

. (1)

x =x+h=>dx=dx

y =y+k=>dy=dy}"(A)
dy 10x+ 10h+ 8y + 8k —12

1) =>—+ =

dx 7x +7h+ 5y + 5k -9

dy 10x+8y+ (10h +8k —12)
dx  7x+5y+ (7Th+5k—-9)

dy  (10x+8y)

dx 7x + 5y
10h+8k—-12=0
7Th+5k—9=0

h k 1

—72+60 —-84+90 50-56
k1

put

()

Where

by (A)
X=x+2=>x=x—2

y=y—1=>y=y+1}:>(B)

19
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—10x — 8vx
2)=>v+xdv/dx =

7x + 5vx
dvn —10—-8v
”+"E= 7+ 5v
dv —-10—-8v — 7v — 5v?
xa= 7+ 5v
dv —5v?—-15v—10
x£= 7+ 5v
dv —-5w?+3v+2)
x£= 7+ 5v
(7 + 5v) dx
v2+3v+2 v=—7
2 3 dx
<v+1+v+2>dv=_57

Integrating on both sides,

2log(v + 1) + 3log(v + 2) = —5logx + logc
log(v+ 1)%(v + 2)3 = logcx™>

Taking e power on both sides,
w+12?w+2)°3=cx®

Y Y o _ €
CH+DE+2) =

%5
(y+x)? (y+2x)2 ¢
x2 x3 - x5

By (B);

+1+x-2)2(y+1+2x—4)3=c
+x+1D?*(y+2x—-3)3=c

Example 4:
Solve (x+y—1dy=(x+y+ 1)dx

Solution:

. dy _ (x+y+1)
Given prolilorovnrral S ITPTPEPLEY (1)
Let x+y=v

dy dv dy dv

1-I_dx_a ﬁdx_a

20
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dv v+1

1 ——1=
()=>dx v—1
dv_v+1_l_1

dx v-—1

dv_v+1+v—1

dx v—1
dv_ 2v
dx v-—1

v—1
( >dv=2dx
v

1
dv ——dv = 2dx
v

Integrating on both sides,

v—logv=2x+c
(x+y)—log(x+y)=2x+c
c=2x—x—y+log(x+y)
c=x—y+log(x+y)

1.4.Type D: Linear Equation:
A differential equation is said to be linear when the dependent variable and its derivatives

occur only in the first degree.
The linear equation is of the form Z—; +Py=Q ........... (1)

where P and Q are functions of x only

. dy _
consider =T Py=0
: dy
(ie.,) 7 + Pdx =0

The solution is ye/ P4* = ¢

Diﬁefpdx(Z—z+Py)=O

21
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el Pax js the integrating factor

(Dmultiply e/ P4x = (2 + py)el Pax = Qe Pdx

Integrating on both sides,

yedex=] Qedexdx_l_C

This is the solution of (1)

Example 1:

4y — 1
Solve 5, T ycosx = —sin 2x
Solution:

. d 1,
Given << 4 ycos x = = sin 2x
dx 2

dy
TPy =q

This equation is of linear eqn.
~P=cosxQ = Esian
consider

f Pdx =f cosxdx = sinx

el Pdx — psinx

The solution is ye! P4* = [ Qel P4%dx + ¢

. 1 .
yesSn¥ = fisin 2x e dx + ¢

1 .
=.f Esinxcosxesm"dx+c

=.f zefdz + ¢

=zez—f e?dz + c

=ze? —e’ +c
= sin xeS"¥ — gSIN¥ 4 ¢

22
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yeSin¥ = esin¥(sinxy — 1) + ¢

Example 2:

d _
Solve xé + ylogx = eXx1-1/2logx

Solution:

. d _1
Given xé + ylogx = e*x'721°8%

1
dy N log x e*x172108%
x> — =
dx X Y X

This is of linear equation

_ logx_ 1

Q= exx_fl()gx
)

P
X
|
.[de=f ngdx
X
=fu-du

=u?/2

log x)?
f dez%

(log x)?
ef Pdx — e 2
logx
— elogn) 2
togx
ef Pdx — X 2

u = logx
logx)? (logx)?
fpdx:(g) (logx)” _

> > log

du = 11xdx

~ The soln is yel P4* = [ Qel Pdxdx + ¢

logx 1lo x
yx 2 =f e¥x~1/2108xx 28X gy 4 ¢

=f e*dx + ¢
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Example 3:
Solve: (1 — x2) dy 1dx + 2xy = xV'1 — x2 given that y = 0 when x = 0
Solution:

Given (1 — x?)dy/dx + 2xy = xV1 — x2

+(1-x%)
dy 2x a1l —x?
dx 1_x2y_\/1—x2\/1—x2

X

2x
dy/dx+1_x2y— T

This is of linear equation

. p= 2x _ _ X
- _1—x2'Q_,/1_x2

de —f 24
X = 1_x2x
_f dt
N t

= —logt
= —log(1 — x?)
e/Pdx — p-log(1-x?)

=1—-x¥)"1=1/1—x?

t=1-—x2
dt = —2xdx
—dt = 2xdx

The solution is ye! P%* = [ Qel Pd*dx + C

dx + ¢

y _f X . 1
1—x2 )] (1—-x2)1/2 (1-x2)
x
-| a=

dx + ¢
sin 6

(1= sinZ )3/2 cos0do + ¢

sin 6
f (cos? 9)3/2 cos0do + ¢
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sin 6

550 cos8do + ¢

sin @ 1
cosf@ cosb

dé +c

tan @ sec6d6O + ¢

—] O 46+
) cos26

T =t e (D

y=0whenx =0

0=1+C
c=-1
y 1
0= = -
1-x2 VI-«2

_ 1

V1 —sin? 6
secd =1/4/1— x?
Example 4:

d
Solve é + ytanx = cos3x
Solution:

. d
Given é + ytanx = cos3 x

This is the linear eqn in xy
~P=tanx Q =cos3x
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consider [ Pdx = [ tan xdx = —logcos x

= log(cosx)™?!
1
COS X

ef Pdx — elog(cosx)_1 —

= The solution is yeJ P9% = [ Qel Paxdx + C

y 1
= | cos3x- dx +c
Cos x CoS X

=f cos? xdx + ¢

1+ cos2x
=f (—2 )dx+c

_1 +1sir12x
—2¥T2 2
Y X ldnox+
cosx 2 4sm xTe

4y = cos(2x + sin 2x) + ¢

+c

Example 5:
d 1
Solve 2~ — 2 = —
dx 1-x 1-x
Solution:
. dy xy 1
Given—————5=——......... (1)

This is the linear equation in y
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—X 1

P:— =
1—x2 Q 1—x2

—-X
]de=] 1_x2dx
t=1-—x?
=j dt/2t
dt = —2xdx

_11
=5 ogt

1
= Elog(l —x?)
= log(1 — x%)V/?
. el Pdx — plog(1-x
= (1 — x2)1/2
ye]de zf Qe]dedx+c
1

2)1/2

y(1—x?)V2 = f —— (1 —x)Y2dx + ¢

(1-x2)

dx
=f\/1 = ‘V1-x2dx+c
- X

V1 — x2

dx
-] ==t
y(1—x?)Y2 =sin"tx+c¢
Example 6:
Solve (1 + x2)dyldx +y = etan™ ' *
Solution:

Given(1 + x2)dy/dx +y = etan ' x

tan1lx

dy
- AN 2y} —
.(1+x)dx+yK1+x) 1T 52

This is the linear equation in (3) y
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1+ x2
e2tan 1x
= j 1T 2 dx +c
= f e?t.dt+C
o2t
=—+c
2
. g2tan 1y
etan™"x — +c
Y 2
Example 7:
dy 3x2y _ sin®x
Solve dx + 1+x3  1+x3
Solution:
dy ~3x*  sin*x

a-l_1+x3y_1+x3

This is linear equation in xy

3x? sin? x
_1+x3’Q_1+x3
t=1+x3

f d_f 3x2d
pax =] 153

dt = 3x?

f dt/t

= logt = log(1 + x3)
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el deelog(1+x3)
=1 -x%

yedex=j Qedex,dx+C

sin x
3y _ 3
y(1+x)—jl+x3-(1+x)dx+c
jl—cost
= ——dx+c
2
15in 2x
=1/2x — +c
4
X sinxcosx+
~2 4 ¢
X sinxcosx_I_
~2 2 ¢

2y(1 4+ x3) = x —sinxcosx + ¢

Example 7:

W _oy 5
Solve dx 2x - (24+x)(3—2x)
Solution:
Gi dy ) B 5x3

ven T B G =)
This is the linear equation,
5x3

2
P= v 0G -0

2
f Pdx = f — dx = —2logx = logx™2
e/Pdx — plogx™?
1
T X2

yedex:f Qefpdx-dx+C

y j‘ 5x3 dx

= = — +c

x? (2+x)(3—2x)x2
xdx

=5 G¥nG-m ¢
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X _ A 4 B
2+x)(3—-x2) 2+x 3-—2x
x=AB—-2x)+B(2 +x)

x=—2
—2="7A
A_z
7
3
X=3
3_7B
> =
3=7B
B_3
7

=5U 7(2_—_|2_x)dx+f ;Gf—xe)]H
= ;[—ZIOg(Z +x) + _izlog(3 - Zx)] +c

Y los(2 4+ x) — Slog(3 — 22)] +
2 =2 [~2log(2 +x) ~ 3 log(3 ~ 23)] + ¢

3
7y = 5x%[—2log(2 + x) — Elog(3 —2x)]+c¢

1.5. Type E:Bernouilli's Equation:
Consider % +Py=Qy" .o (1)

Where P and Q are functions of x only.

This can be reduced to the linear equation

Put z = y1™™
dz dy
— (1 — 1-n-1
dx (1 =n)y dx
1 dz dy
— -n

1—na_y dx

~ (2) reduces to
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1_na+PZ=Q
dZ+ 1 P=0(1
H(-mzP = Q)

This being linear in z, can be integrated by the method of solving linear equation and hence y

can be got.
Example 1:
d i 2
Solve 2% — ytanx = - >=
dx 4
Solution:
. d i 2
Given =2 — ytanx = ===
dx y

(D)multiply y2 y2dy/dx — y3tan x = sin xcos? x

Put z =y3

dz dy
— =3y2 =
dx Y dx
1dz , ay
_——_— y R
3dx dx

~ (2) reduces to

1dz

—— —tanxz = sin xcos? x
3dx

dz

— — 3tan xz = 3sin xcos? x
dx

This is linear equation in z

P =—-3tanx, Q = 3sinxcos? x

f dezf — 3tan xdx

= —3log(secx) + ¢

el PAx = Jog(secx) 3

1

el Pdx = gec 3 x = —
cos 3 x

= cos3 x
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26 P& f Qel Py 4+ C

2cos3x = j 3sin xcos3 xcos? xdx + ¢
2cos3x = j 3sin xcos3 xcos? xdx + ¢
zcos3 x = 3] sin xcos 5xdx + ¢t = cosx

zcos3 x = —S.f t3dt + ¢ dt dsinxdx

3

zcos3 x = —6[t6] +C
1
ycos3x = —Ec056x+c

Example 2:
Solve: (x + 1)% +1=2e™.

Solution:

Given (x + 1)d—y +1=2e77
dx
multiply by ,e™
d
e¥(x + 1)% +e¥Y=eY . ()

~ (1) = +1dZ+ =2
s> @D —+z=

+~(x+1)
dz z 2
— 4+ —
dx x+1 x+1
This is the Linear Equation in z

Here,
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bl 2
BT

]Pd— N T
= 1 e+ 1)

~ The solution is

Zefpdx=j Qel Pdxdy + ¢

Z(x+1)=j x+1(x+1)dx+c

z(x+1)=2x+c
se’(x+1)=2x+c.

Example 3:

d :
Solve: ﬁ + ycosx = y™sin 2x.

Solution:

dy .

Ix + ycos x = y™sin 2x.

-ndy 1-n — o
+y" > Y w1ty cosx =sinzx (1)
Take

z =yl

dz d

Frial G n)yl‘”‘lé

1 dz _ dy
1—ndx dx

1 ! dZ+ in 2
oo = — =
(D) — . d. T cosz =sin2x

dz
Multiply (1 —n) za + (1 —n)cosxz = (1 — n)sin 2x
This is the linear equation in x.
Hese P = (1 —n)cosx

f Pdx =(1- n)f cos xdx

= (1 —n)sinx
ef Pdx — p(1-n)sinx

The solution is
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zefpd":f Qel PAxdx + C
ze(1-)sinx — j (1 — n)sin 2xe(I~™siNxgy + ¢
=2(1— n)j sin xcos xe(c~™snXqx + ¢

=2(1—n) j te(I=Mtde + ¢

o (-1t

(1-n)

v =

(1-n)t f e(l—n)t

— dtl+c
-n

te
=2(1—n)l 1

(1-n)t
=2 le(l_n)t . el—l +c

1—n

(1—n)sinx
Ze(l—n)sinx =2 Isinxe(l—n)sinx —l +c
il—n

yl—nel—n(l—n)sinx =2 lsin xe(l—n)sinx _
1—n
Example 4:

dy 3

2, =2
Solve = —-y =~

Solution:

This is the linear equation in Z.
4
Here,P =, Q = —2/x3

Consider,

e(l—n)sinx
—|+c
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4
f Pdx = f ;dx = 4logx = log x*
el Pdx — 4

The solution is
zefpdx=j Qel Pdxdy + ¢
2
zx* = j ——x*dx+c
x

zx* = —2[ xdx + ¢
x2

=2 _
2+c

y2xt=—-x%+c
y2xt+x%=c

xZ
x? (}7+ 1) =cx?(x? +y?) =cy?

1.6. Exact Differential Equation:

An exact differential equation is obtained by equating exact or perfect differential to zero.
Now we investigate the condition that a given differential equation may is e exact and the
method of Integrating is then when the condition is satisfied.

Condition 1:

Let Mdx + Ndy = 0 be the differential equation

If this is exact, udx + Ndy must have been obtained by derivating some function u(x, y) and
performing no other operation.

s~ du = Mdx + Ndy.

But du = 2= dx +g—;dy.

Hence the necessary condition for the go egn sh exact are

M= ou N = ou
~ox 0y
~OM 5%u Su SN

”E:E)yax:f)xay:a

Hence ‘;—I\y" = ‘;—IZ is the criterion for Mdx + N dy = 0 to be exact

Condition 2:
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This condition is also sufficient.
If there be a function u(x, y) whose differential du=Mdx + Ndy, we shall integrates relatively
to x.

As the partial differential Mdx could have been derived only from the term containing x,

u= j Mdx + terms not containing x

=] Mdx + F(y) e oo e e (1)
Differentiating with respect to y partially,
Ju ( OMdx LR

_ ou
As, N = 3y
vy =N — [ M
F'y)=N-—{ aydx .............. (2)
Differentiating with respect to x,
ON oM 0
ox Jy

Integrating with respect to y,
F(y) =f N—f a—dedy+C
dy

where C is an arbituary constant-
1)= 0= Mdx+ [ (N —f Z—A;dx) dy + c is the primitive required.
Condition 3:
Practical Rule for solving exact differential equation:
Integrate Mdx as if y were constant and those terms in N dy that do not give the terms
already occurring. The sum of these integrals equated to a constant gives the solution
[ Mdx (treating y as constant) + | terms in N not containing x dy = c
Example 1:
Solve (a? — 2xy — y*)dx — (x + y)?dy =0
Solution:
Given (a? — 2xy —y?)dx — (x + y)?dx =0. ............ (1)
Here

M = a? — 2xy — y?
N = —(x + y)?
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oM

= —2x-2
dy x y
aN— 2(x +
oM _ ON
HEFEE—ax

=~ (1) is an exact differential equation
Consider (a? — 2xy — y?)dx
Integrating with respect to x, we get
2
a’x — Z%y —y2x
Differentiating with respect to y
—x? = 2yx = —(x? + 2xy)
The only, term left over in —(x + y)2dy is y2dy

3

=~ The solution is a?x — x?y — y2x — 3’? =c

Example 2:

Solve (2x%y + 4x® — 12xy? + 3y? —xe” + e*)dy +
(12x%y + 2xy? + 4x3 — 4y3 + 2ye?* —e¥)dx = 0

Solution:

(2x2%y + 4x3 — 12xy? + 3y? — xe¥ + e?¥)dy +
(12x2%y + 2xy? + 4x3 — 4y3 + 2ye?* —eY)dx = 0

M = 12x3y + 2xy? + 4x3 — 4y3 + 2ye?*—eY
N = 2x%y + 4x3 — 12xy% + 3y% = xe¥ + e?*

Now,

oM
3y = 12x% + 4xy + 12x? — 12y? 4+ 2e?* — ¥

ON
Fie 4dxy + 12x2% — 12y?% — e¥ + 2e?*

here 6_M = (’)_N

dy Ox
= The given equation is exact
= The solution.

[ Mdx + [ Ntermsin N not containing xdy = C.
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12x3y  2x%y? 4x* 2ye
— 4xy3
R e A
= 4x3y + x%y? + x* —4xy3 + ye?* —xe? +y3 =¢

Note:

Sometimes an equation can be rendered exact by multiplying the equation by a suitable

integrating factor (I.F).

Rules for finding Integrating factors:

1

1. When Mx + Ny # 0 and the equation is homogeneous.
Mx+Ny

Mdx + Ndy = 0.
2. When Mx = Ny + 0 and the equation of is the form

1

f, (xy) ydx + f,(xy) ydx = 0 Ny isan IF
1(0M ON) . . .
3. If (5 - E) is a function of x alone say f(x) then the IF is e/ f()dx,
ON oMY _ . :
4. |f$(g - 5) a in of y alone say f(y) then the I. gie e/ Sy,
Example 1:

Solve: (x%y — 2xy?)dx — (x3 — 3x%y)dy = 0.

Solution:
(x%2y — 2xy®)dx — (x3 = 3x%y)dy =0 e e (1)
Here

M = x?y — 2xy?
N = —(x3 — 3x2y)
oM

3y = x? — 4xy

JdN

= _ 2 _

9% (3x% — 6xy)
oM ON

—_— i _—

dy 0dyx

= The given equation is not exact

since the given equation is homo 1.

isan IF of
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1

"l F—
Mx + Ny
[ = 1
~x3y — 2x2y2 — x3y + 3x2y2
1
F =5
x2y — 2xy? (x® = 3x%y)dy
Ty T Tar )
O
y X y: oy
1 2
Ml_;_;
3
M=)
Here om, _ -1 om _ 1
dy y* ox  y?
. oMy _ 0Ny
'6y_6x

= The equation is exact.

~ The solution is

[ M,dx + [ terms in N; Not confaining xdy = c.

1 2 3
.[ (———)dx+f—dy=c
y X y

x
= ; — 2logx + 3logy = ¢
x
= " +logx? +logy3 =c¢
x
=>—+logx?y3=c¢
y g
x y3
= 5 + logF =c
Example 2:
Solve: y(xy + 2x%y?)dx + x(xy — x?y?)dy = 0.
Solution:

The equation is of the form f; (xy)ydx + f,(xy)xdy = 0.
1

By rule 2, the I.F. =

Mx—Ny

~ 1

— xy(xy + 2x2y2) — xy(xy — x%y?)
1

- 3x3y3
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1
3x3y3’

Multiplying the equation by we have

y(xy + 2x%y?) x(xy — x*y?)
3x3y3 x+ 3x3y3
_ 1 2 1 1
1.C., (3x2y + g) dx + (3xy2 - 5) dy =0

This is exact. Hence [ ( :

3x2y

dy =0

not containing x) = C.

g - L = ¢
sSlog— — — =
gy xy
Example 3:

Solve (y — 3x?)dx — x(1 — xy?)dy = 0.

Solution:

The equation can be written in the form
ydx — xdy — 3x%dx + x?y?dy = 0

ydx—xdy
x2

Dividing by x?2, we get —3dx+ y?dy =0

+ i) dx (treating y as constant) +J — %dy (only these terms

—d (%) - d@0) +3d(y%) = 0. ~X-3x+1y3=C

Example 4:

d 2x
SO|V€-4X== —_—
dx  x%2+y2-2y

Solution:

The equation can be written in the form

(x%? + y?)dy = 2ydy + 2xdx
_d(y? +x?)
C x24y?
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dy = dlog(x? + y2). =~ y =log(x? +y?) +

ek

“““““

Example 5:

Solve (1 + xy?)dx + (1 + x2y)dy = 0.

Solution:

The equation can be written in the form

dx + dy + xy(ydx + xdy) =0
ie, d(x+y)+xyd(xy)=0

1
ie,dx+y)+ Ed(xy)2 =0

1
.'.x+y+§(xy)2= C.

Example 6:

Solve (x% + y?)(xdx + ydy) = a?(xdy — ydx)

Solution:

This equation can be written in the form

xdx + ydy = a?

1
S T 2y _ 2 -1 (2
2d(x + y?) = a’dtan (x)

xdy — ydx
x% +y?
y

1 y
. 2 2 2 -1
s~ =(x* 4+ y?) =a’tan ()+C

Exercises:

1.

2
3.
4

Solve (x3y3 + x%y? + xy + Dydx + (x3y3 — x?y? —xy + 1)xdy) = 0
Solve ydx — xdy — 3x2y2e*’dx = 0

Solve (x? — yxz)% + (y? + x2%y?) = 0.

. Solve (x? — x + y?)dx + (ye¥ — 2xy)dy = 0.
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UNIT II:

Equation of first order but of higher degree: Equation solvable for dy/dx - Equation solvable
for y — Equation solvable for x — Clairaut’s form — Linear Equations with constant
coefficients: Definition — The operator D — Complete solution — Particular integrals of
algebraic, exponential, trigonometric functions and their products.

Chapter 2: Sections — 2.1-2.7

2.Equation of first Order but not of Higher degree:

2.1.Type A:Equations solvable for %

we shall denote Z—z hereafter by P. Let the equation of the first order and of the n'™ degree be
P+ Pip™ 1 + Pyp" 24+ P, =0

where Py, P,, ..., B, denote functions of x and y Suppose the first member of (1) can is
resolved into factors of the first degree of the form

(®—R)@—R)(P—R3)(p—Ry)

Any relation between x & y which makes any of these functions factors vanish is a solution
of (1). let the primitives of

P—R;=0,P—R, =0,cetc. be

¢1(x,y,¢1) =0,¢,(x,y,¢c,) =0,a,, = (x,y,2,) = 0 respectively, where c,,c, are arbitary
constants without any loss of generality, we can replace c;, ¢, ... ¢, by c.

Where c is an arbitrary constant.

Hence, the solution of (1) is

b1 (xyC) - p(xyc) -+ Py (xyc) = 0.

Example 1:

1.Solve: x?p? + 3xyp + 2y* =0

Solution:

Given x?p2 +3xyp +2y2 =0 . ee v ... 1)
2y y
=7 =0

(P+2) o+

P+=2=0;P+2=0

Now consider,
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2y
pt——=
dy 2y
dx X
dy  2dx
y  x
logy = —2logx

logy = —logx? + logc
logy + logx? =logc
Taking e power on both side

x%y =c

Consider

P+i=0
X

axtx= 0
dy —dx
dy «x
logy = logx + logc
logy + logxlogc
Taking e power on both sides
Xy =c¢c
From (2) & (3)
(x%y — ¢)(xy — ¢) = 0 is the required solution.

Example 2:

2 2
Solve: p? +(x+y—27y)p+xy+%—y—y;: 0
Solution:

2
Givenp2+(x+y—27y)p+xy+y?=0

Consider,

43

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



P+x—==0
X
P—X=—x
X
dy_y_ _
dx x
This is a linear equation
-1
P=—,0=—x
X

] pdx = —logx = el Pdx — p-logx — 1/x
The Solution is

yedexzf Qedexdx_l_C

—f ~dx +
y/x = Lxte
y/x=—-x+c

Consider:
p+y—y/x=0
dy y
a+y(1 —;) =0

d d
—y=—dx+—x
y x

Integrating on both sides,

logy = —x +logx + logc
logy + x —logx = logc
log(y/x) +x = logc
Taking e power on both sides

y
—.e*=c¢
X

From (2) & (3)

(y +x2 — cx)(y — cxe™™) = 0, is the required solution.

2.2.Type B:

Let the differential equation (1) in section 2.1 be put in the form f(x,y,p) = 0. When it
cannot be resolved into rational linear factors as in section 2.1, it may be either solved for y

(or) x.
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1. Equations solvable for y:

f(x,y,p) = 0canbeputinthe formy = F(x,p) ........... (1)

Differentiating with respect to x,

p = ¢(x,p,dp/dx)

This, being an equation in the two variables p and s, can be integrated by any of the methods.
Hence we obtain,

Yx,p,c)=0 ........ (2)

Eliminating p between (1) and (2) the solution is got.

2. Equation solvable for x

f(x,y,p) = 0 be in this case put in the form.

x=F,p). .eoo..... (1)
Differentiating with respect to y,

1/p = ¢(y,p,dp/dx)

This equation being in two variable p and y, can be integrated by any of the method.
Hence Y (@,p,C) =0 ...........(2)

Eliminating p between (1) & (2) the solutions of (1) is got.

Example 1:

Solve xp? —2yp+x =0

Solution:

Given, xp? —2yp+x =0

xp? +x =2yp
2yp = xp? + x

) )

y= 2p

Differentiating with respect to x,

dy 2P|x(2P Z—I;) + (P2 + )| - [x(P? + 1)2dP/dx]
dx 4p2

dP

&)+ (P? + 1| - [x(P? + 1)2dP /dx]

4p?

. 2P [x (2p
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o omen

dp dp dp
3 — 2, 2 _ 2,2 0 -
4p —4pxdx+2p(p +1) prdx X
d
4p3 = 2p2xd—i + 2p(p? + 1) — 2xdp/dx.
3= 00 P2 2
4p* =2x_(p* — D +2p(p* +1)

+ 4p3

d
xd—g(p2—1)+p2+1
2p3 2p?
p*+1 x(p>-1)dp

1

2p? 2p®  dx
2p? —p* -1 _ x(p*—Ddp
2p? - 2p3  dx’
p>—1 _ x-(p>—1)dp
2p? 2p3 dx
_xdp
= i
dp dx
P x

Integrating on both sides,
logp = logx + logc
P =XC ceoerver e (2)

Sub (2) in (1).
x(c?x?+1)

VST e
2cy=c?x2+1
Example 2:
Solve: x = y% + logp.
Solution:
Given x = y% +1ogp v v .. (1)

Differentiating with respect to y
d 1d
dy pdy
1 1dp
=2y 4 ——
p- 7Ty
dp

1=2yp+5
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dp

—+2yp=1
dx+ yp

This is linear in P.
Pi=2y;0;: =1

|. Fef Pdx — of 2ydy

Hence Pe¥ = [e¥’dy +¢ ............ )

The eliminant of p between (1) & (2) gives the solution.
2.3.Particular case for solvable for y:

1.Clairaut's form.

The equation known as Clairaut’s form.

y=px+f®) e e.. (1)
Differentiating with respect to x

dy dp
a—p+x5+f (p)dp.

d
p=p+ (x+f’(p))£

d
0=Ce+ 1"

= ot ) =0
dx_ » X f(p)_

Now
dp _
dx

= P = (C, a constant.

0

=~ The solution is
y=cx+ f(c).
Note:
1. We have to replace p in clairauts equation by C.
2. The other factor x + f'(p) = 0 taken along with equation (1) give on elimination of

P, a solution of (1). such a solution called, a singular solution

Example 1:
Solve : y = (x — a)p — p2.
Solution:
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y=(x—ap-p’

This is Clairauts equation,
= The general solution is
y =(x—a)c—c?
Example 2:

Solve: y = 2px + y?p3.
Solution:

Putting X=2x and Y=y2, the equation transforms into

Y=XP+P3 , where P = g—; = py

This is Clairaut’s equation; hence Y=Xc+c¢3
The solution is y?=2xc+c?3

2.We have an extended from of Clairaut’s equation of the type

y=xf(@)+d®) .ornnn.... (1)
Differentiating with respect to x

d
p=F()+[x @)+ @]

dx | xf'®) _ ¢'®
dp f-p p—fp)
This is linear in x and hence gives F (X, p, ¢) =0

The eliminant of p between this equation and (1) gives the solution of (1).

Example 1:
Solve: y = px + x(1 + p?)/2.
Solution:
Given

y=px+x(1+p>)2 ... (1)
y =[P+ 1+P)V?]x
This is of extended Clairaute form.

Differentiating with respect to X,
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dy dpP 1 N1 dP 1
= _ sl - -1/29p 2" 2
Ix P+xdx+x2(1+P) Zde+(1+P)2
dp px dp
= —_ - 1 2\1/2
=>p p+xdx+mdx+( + p?%)
1 dp px
>0=>0+ 2Lb—h+
1 +p*)2+ - T
dp | 2
=J(1+p2) =—x|1+—
P dx | J1+ p2]
dp [J1+p%+p|
I o SN MR e
dx | J1+p?
dx 1+p2+
I Ve S
x (1+p?)

Integrating on both side,

= log(p,/l +p2+1 +p2) = —logx + logc

= log(p 1+p2+(1 +p2)> + logx =logc

= log [p,/l +p2+(1+ pz)x] =logc
Taking e power on both sides [PV1+ P2+ (1 +P?)|x=c ............. )
The eliminant of P between (1) & (2) gives the solution,
given y = 2px + y?p3
Take
x=2x; y=y?
dx = 2dx; dy = 2ydy.
dy 2ydy dy
dx 2dz Y dx

P
p=y =>p=—
y
p
>p=—[y=y%
Jy

~ ()=
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= Jy =px +yp?
_p P
ﬁ_ﬁ”(ﬁ)
ﬁ_fx”yf

> y=px+ p
This is of Clairaut’s form.

The solution is

y=cx+c3
y? =2cx + ¢3

2.4. Linear Equation with constant Coefficients:

Definitions:

A linear equation is one in which the dependent variable y and its derivatives of any Order
occur only in the first degrees are not multiplied together, their coefficients being Constants
or functions of the independent Variable x.

Consider the equation.

dny dn—ly dn—Zy B
Tttt By =X e (D)

Where Py, P,, ... B, and x are functions of X or constants. We will first show that the complete

solution of (1) contains, as part the complete solution of (1) without the second member,

dnl

(i.e.,) that of +p1 + oty =0 (2)

dxn—1
If y =y, be a solution of (2), we easily see by substitution that y = c;y;, where c; is
arbitrary constant, is a solution of (2).

Similarly, if y = y,, y = ys3 ...y = y, be integral of (2) then y; = c,y,, ...y = C,y, are also
integral of (2) c,, cs, ... ¢, being arbitrary constants.

Thus y = ¢,y + ¢y, + -+ ¢, ¥, is a solution of (2) as cant verified by substitution.

If yi, v, ...y, are linearly independent the above value of y is the complete solution of (2) as it
contains n arbitrary constants, n being equal to order of the equation (2).

Let y = u be a particular solution of (1) (where u does not contain any arbitrary constant) then
y =y +u,wherey =c,y; + -+ + ¢,y is a solution of (2).

This represents the complete solution of (1) as it coitus arbitrary constants. The pact of y is

called the Complementary Function of (1) & u is called the particular integral of (1). Thus the
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= =

primitive of (1) is the sum of the complementary function and the particular integral.
2.5.The Operator D:

2
Let D denote the Operator < D2 for d—z -dt.
dx dx

The symbol. D satisfies the commutative, associative, distributive laws of Algebra.
For, if m and n are positive integers.

(D™ + D™)v= (D™ + D™)u
D™ .D"y = D" . DMy = DMty
and D(u +v)=D(v+u).

We can define the operator with negative indices by common analogy with algebra.

If Du = v then u lan be written as D~1. The operator D=1 is the inverse operator, it %
Thenv=Du=D-D v

ie,D-D1=1.

The Inverse operator D1 is one such that when it operates on any function of x and
subsequently the operation by D be performed, the function is left unaltered. The inverse
operators also obey algebraical laws. D~ represents an integration

the equation (1) of 1 can be symbolically written as.

D"+ P D"+ P, D" 2+ .-+ Py =X

If we set f(D) =D"+ P, D" 1 +--4+ B, (Dis f(D)y =X

2.6. Complementary function of a linear equation with constant coefficients:

Let us consider the equation d™y + PYY 4y Py=X ... (1)

where P, ... B, are constants and X a function of x,

e, fD)y=X .coeeeenn. )
The complementary function of (2) is the general solution of
fDyy=0 ... 3)

Let us take a trial solution y = e™* of (2) for came value of m, As D"e™* = m"e™*, then
Substitution of e™* for y in (2) gives. f(m)e™ =0

Hence f(m) = m"+ Pm™ 1+ P, =0. ............... 4)
This equation is called the auxiliary equation.
Case: 1

Let the auxiliary equation (4 ) have n distinct roots, say m,, m,, ...m,, -
The complete sols of (3) is

y = ce™* 4 ¢ e™2X 4 c3e™3* + .o 4 ¢ e™n*
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where C;, C,, ... C,, are arbitrary constants.

Case: 2

Let two of the roots of equation (3), say m; and m, be equal

The past of the complementary function arising from the two roots is (¢; + c,)e™* & as
c1 + ¢, can be replaced by a single constant, the no.. of constants in general soln of (2) is
reduced by oneton — 1.

Hence we Proceed as follows.:

Let us put m, = m; + € & allow € to tend to zero. The C.F. arising from these roots is

Clemlx + Cze(m2+6)x

=em1x [C1 + Czeex]
2x2

=eM1X Icl +c, (1 +ex + + - )l by the exponential theorem.

2!
= e™*[c; + ¢, + ¢, € x], the other terms tending to zero as €— 0
we can choose e, sufficiently big as to make c, € finite as € — 0 and C; large leith
Opposite orign to G, + C5,A & C,C — B, the C.F. conresponding to the Hwo equal voots m,
ise™" (A + Bx).
More generally, if r roots of (3) are equal to m,, say the corresponding r terms in CF will
apparently coalesce into a single term. But, by a similar reasoning to that we have adopted for
two equal roots, the r terms in the C.F can be replaced by.
e™*(A; + Ayx + -+ Ax™ ).
Case 3:
let the auxiliary equation have imaginary roots. Imaginary roots always occur in pairs. Thus if
a+ if aroot of (3), a -if is also a root; a , B being real.
The corresponding terms of the C.F., are
e (@HBIX 4 o o (x—if)x
=e®[c,eh* + c e,
=e%[c,(cos Bx + isin fx) + c,(cos fx — isin fx)] by Euler’s formula
y = e*(ncos fx + Bsin fx),
where A & B are arbitrary constants.
Example 1:
Solve: (D? = 5D +4)y =0
Solution:

Given (D2 -5D+4)y =0
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m2—5m+4=0
(m—-4)(m—-1)=0

m, = 1,4 roots are distinct.

=~ The solution is y = C,e* + c,e*.
Example 2:

Solve: (D3 —3D? +4)y = 0.
Solution:

(D3 =3D2+4)y =0
m3—3m?+4=0
(m+1)(mM?—-4m+4)=0
(m+1)(m-2)2=0

m=-—1,2,2

y =ce™™ 4+ e**(c,+c3x)

Example 3:

Solve: (D* — 4D3 + 8D? — 8D + 4)y = 0.
Solution:

(D* —4D%*+8D?>—-8D+4)y =0
The AE is
m*—4m3+8m?—-8m+4=0
(m?>-2m+2)?=0
(m?>-2m+2)(m?*-2m+2)=0
m=(1=+1i)

= e*(A + Bx)(c cosx + Dsinx)
2.7. Particular Integral:

To find the particular integral of f(D)y = x, where X is any function of x only, various

special methods are devised which depend on the form of x.

The particular integral is written symbolically as % X. we have already defined the inverse

L

operator
P fm’

accordingly Tlu) X is a that function of x, which when operated upon by f (D),

yields X.

53

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



1.General method of finding Particular Integral:

TID) can either be broken up into factors which can be taken in any order into partial

functions. If the roots of the auxiliary equations f(m) = 0 be m;, m,, ...m,,. then.
f(D)=(D —-my) ........(D — m,).

Hence TID) X can be put either in the form.

1 1 1

, X
D—m; D—-m, D-m,

et

D—-m4 D—-m, D-mp

)X, where A4, A,, ... A,, are constants.

This is first analogous to decomposition into partial functions for rational algebraic functions.

In either case, the evaluation of the P.I depends on Di_ax.

1 . d
Letz =— X ie., E _az=x
D—a dx

This is a linear equation of the first order hence
ze ¥ = f Xe Hdx

No constant should be added as this is o P.I

z = eax.f xe “dx

2.Special Method for finding P.1.

i)x =e
case 1:
1 Lax i
In e replace D by a if f(D) # 0
case: 2
) _ _ eax
if f(a) = 0then. P.I prEYE
1 1 x"e?
edx —
f(D) Y(a) !
Example 1:

Solve (D? + 5D + 6)y = e*
Solution:
Given (D?+5D + 6)y = e*

The auxiliary equation is
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m?+5m+6=0
m+2)(m+3)=0
m=—2,—-3

=~ The complementary function is

y=cre e (1)
To find P.1
e~ e*
Y=D245D+6 1+5+6
ex
" 12

= The general solution is
y=c-F+P-1

1
— —2x —3x X
Yy =€ + cye + 12 e

Example 2:
Solve: (D? — 2mD + m?)y = e™*
Solution:
Given (D? —2mD + m?) -y = e™*
The Auxiliary equation is,
k? —2mk—-—m? =0
(k—m)?=0
k=mm
TheC-Fisy =e™(c; +c3x) ooevnnnnnn. (1)
Now, P.1
_ e
D2 —2mD + m?
emx
RCETE
xZ

=~ The general solution is,

2

X
y=e™(c; +cyx) + 7emx

Let X be of the form cos ax or sin ax where a is a constant.

mx

mx

X = cosax (or)sinax

Replace D?by — a?, provided.
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Case L: If p(—a?) # 0
1
¢ (D?)

sinax = ¢(—a?) sinax if p(D?) be a rational integral function of D?

_ 2
1 sinax=¢(a)

$(0?) p(0z) SHAX

Operating on both sides by

Hence the rule is:
Replace D? by —a?, provided ¢p(—a?) # 0

The same rule applies if sin ax be replaced by cos ax,

. 1 1
i.e., ——cosax =
02 YTy ez

cos ax

In general, f(D) will consists of even and odd powers of D. But we can always express f(D) in

the form ¢(D?) + Dy(D?)
1 1 .
o " T T 0 + o)
1
" p(—a?) + Dy(—a?)
_ ¢(=a?®) — Dyp(—a?)
= ¢2(_a2) _ DzlpZ(_az)
_ ¢ (—a?)sin ax — acos axyp(—a?)

¢?(—a?) + a*y?(—a?)

sin ax

sin ax

Case 2. Let ¢(—a?) = 0.~ D? + a? is a factor of ¢p(D?).
Hence ¢(D?) = (D? + a?)y(D?), where Y (—a?) # 0.

1 1 .
—(]')(DZ) Sinax = (DZ n az)l/)(DZ) Sin ax
1 1
= 1/)(—a2) DZ n az Sin ax

L G -1 i aix
Now, —— sinax = —— Imaginary Part of e

as e®* = cos ax + isin ax (by Euler's formula)

= i _1 Laix
= Imaginary Part of sz @
= Imaginary Part of 1 eaix
(D —ai)(D + ai)
1 .
= Imaginary Part of m aix
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xealx

2ai

= Imaginary Part of

. —xi o
= Imaginary Part of >q (cos ax + isin ax)
XxXcos ax
B 2a
A similar procedure is adopted in the case when X = cos ax. - — cos ax = "S‘Z“a“".

Example 1:
Solve (D* + 2D?n? + n*)y = cos mx.
Solution:

To find C.F., solve (D* + 2D?n? + n*)y = 0.

The auxiliary equation is k* + 2k?n? + n* = 0.

(Here k is used instead of m as another m occurs in the second member.)
(k? + n?)? = 0 or k? = —n? twice.

k = + in twice.
C.F. = (Acosnx + Bsinnx)(C+ Dx)

1 1
P.l. = mcosmx = mcosmx

cosmx
(nz_mZ)Z'

~y = (Acosnx + Bsinnx)(C + Dx) +

Example 2:
Solve (D? — 8D + 9)y = 8sin 5x.

Solution:

To find C.F., solve (D? —8D +9)y = 0.
The auxiliary equation is m? — 8m + 9 = 0.
Solving, m = 4 ++/7.

~CF. = e4x(Cle‘/7x + Cze“ﬁ").
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“pz_gprgonF

8 .
= 25-8D1 o mo¥
1 D=2
PL ——D+251n X = =gy sinSx

5cos 5x — 2sin 5x
—25—-4
5cos 5x — 2sin 5x

29
y= CF. + P.L

5cos 5x — 2sin 5x

y = e4x(Cleﬁx + Cze_ﬁx)‘l': 29

Example 3:
2
Show that the solution of the differential equation ZTZ + 4: = Asin pt which is such that y =

A(shlpt—%pshth)

0and2—f=0whent=0isy= if p # 2.

4—p?

A(sin 2t—2tcos 2t)
p .

If p = 2, show that y =

To find the C.F., solve (D? + 4)y = 0 where D stands for % The auxiliary equation is m? +

4 = 0. Hence m = +2. C.F. = C,cos 2t + C,sin 2t. (Note that the independent variable is t.)

1

P.l. = Asinpt
=4_pzsinptifp2 + 4
~ y = Cycos2t + C,sin 2t + 4_Apz sin pt.

To determine the values of C, and C,, we note that

Whent=0,y=0and2—3t’=0. ~ 0=0C,.

d—y=—2C sin 2t + 2C,cos 2t + p cospt
dt ' ’ a=p2 P
Ap Ap
-~ 0=2C —— (= ————<
R T
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A(shlpt—%pshth)

Hence y =

4-p?
Ifp=2,Pl=—— Asin2t
= Imaginary Part of D2A+4 g2t

A
(D +20)(D—20)°

2it

Imaginary Part of

_ A
Imaginary Part of yr te?t

At
= Imaginary Part of — T i(cos 2t + isin 2t)

_ Atcos2t
YR

) Atcos 2t

y = Cycos 2t + C,sin 2t — —

Whent =0,y =0.~0=2C;

dy : A :
P —2C;sin 2t + 2C,cos 2t — 1 (cos 2t — 2tsin 2t)
A(sin 2t — 2tcos 2t)
y= 3
Example 4:

Solve (D? — 4D + 3)y = sin 3x cos 2x.

Solution:

The auxiliary equation is m? — 4m + 3 = 0.
~m=1or3.

C.F. = Ae* + Be 3%,

Pl = msin 3xcos 2x
1 sin 5x + sin x
~DZ—4D+3 2
- —25—14D+3 511125X + —1—41}D+3 81121x by §4.2. (b)
2b—-11 11+2D
= 242 — 121) SN O¥ T T —gp2 SINX
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_ 10 cos5x — 11sin5x sinx + 2cosx

884 * 20
y =C.F. +P.l.
y = Ae* + Be 3X+10cos 5x—11sin 5x + sin x+2cos x
884 20
Example 5:

Solve (D? + 16)y = e™3* + cos 4x.

Solution:

The auxiliary equation is m? + 16 = 0.
sm = 14i.

C.F. = Acos 4x + Bsin 4x.

P.l1 corresponding to e ~3%

1 1
— -3x — ___ e—3x
D? + 16 25
. 1
P.12 corresponding to cos 4x = 5711g COS 4x

Real Part of e**

1
(D + 40)(D — 40) ©

~DZ+16
= Real Part of

4ix

1 .
Real Part of gxe‘“x

X
Real Part of — 3 i(cos4x + isin 4x)

_x in 4
—8511’1 X

.y = Acos 4x + Bsin 4x + %e‘“ + gsin 4x.

(c) X is of the form e®*V, where Vis any function of x.
D(e®™ V) =e®™(D+a)V.~. e *™D(e* V)= (D+a)V

We may interpret the result thus : the effect of operating on VV by e ~**De%* is the same as

D + a operating on V .
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Symbolically, (e~"**De®*)V = (D + a)V.

Operate on both sides by e ~*De%*.

(e™**De*™)(e~*De* V) = (D + a)(D + a)V
(e™*D2%e*)V=(D+a)?V

Again repeat the same operation; we get
(e7**D3e¥™)V=(D+a)dV
If the operation be performed n times,

(e=**D"e*)V = (D + a)" V
~ DM(e*™ V)=e*(D+a)*V

If £(D) is a rational integral function of D,
f(D)e* V=e™f(D+a)V

Operate on both sides by Tln)'

e V= e f(D+a)V

f (D)
Denoting f(D + a)V by V;,

1 1
e VvV, = eV,

fO+a) " f(D)

Hence, reversing, —_ % . X =¥ X,
f(D) f(D+a)

Example 1:

Solve (D3 — 2D + 4)y = e*cos x.

Solution:
The auxiliary equationis m3 —2m +4 =0
ie,(m+2)(m?>-2m+2)=0
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Solving, m=-2o0r1 +i.

C.F. = Ae ™ + e*( Bcosx + Csin x)

PI = mexCOSX
1
= e¥ 4.2
D+ 2D+ 1) 14 0sx by §42(0)
1
— pX
“ D +3D2+D+3 "
1
— pX
D+ DD+3)
o D-3
SCm—m+n T
= e* 10(D12+1) (sinx + 3cos x) by §4.2( b)
— é H 1 ix
=75 { Imaginary Part +3 Real Part } of si @

— é H 1 ix

= 10{ Imaginary Part +3 Real Part } of D05 ¢

= %{ Imaginary Part +3 Real Part } of%xe""

=< Imaginary Part +3 Real Part } of —L(cosx + isinx
10 2

X
= % (—cosx + 3sinx).

y=C.F. +P.L
y = Ae™?* + e*( Bcosx + Csinx) + %(—cosx + 3sinx).
(d) Xis of the form x™ (a power of x ), m being a positive integer.

To evaluate %xm, raise f(D) to power - 1 and expand in ascending powers of D as far as

D™, These terms in the expansion of {f(D)}~! operating on x™ the particular integral

required. Examples.

Example 1:

Solve (D3 —D? =D+ 1)y =1+ x2.
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Solution:

The auxiliary equation is m3 —m?2 —m+1 = 0.
Solving, m = —1 and m = 1 twice.

C.F.=Ae™ + e*( B+ Cx).

PI (1+x2)

" D-120D+1)
=(1+D)1(1-D)"2(1 + x?)
=(1-D+D?)(1+ 2D+ 3D?)(1 +x2)

expanding as far as D?

=(1+D+2D?)(1 +x2)
=5+ 2x + x?
y= CF. + P.L

y=Ae™™ +e*( B+ Cx)+(5+ 2x + x?)
Example 2:

Solve (D* + D3 + D?)y = 5x2 + cos x.
The auxiliary equation is m* + m3 + m? = 0.

Solving, m = 0 twice and m = _11;@.

#CF.=A+Bx+e*/?2 (Ccos?x + Dsingx).

i 2 — 1 2
P.1. corresponding to 5x° = D2(D74D7D) 5x

1
= ﬁ(l + D + D?)~15x2

= %(1 — (D +D?)+ (D +D?*)?—(D+D?*)3*+(D + D?*)*}5x?

(It must be noted that we have to expand as far as D* in the numerator as D? occurs in the

denominator.)

63

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Hence the above P.I.

1
=E(1—D+D3 —D4)5X2

1 1
—__ 2 _ = 2 _ N2 2
—D25x D5x + (D — D?)5x
= [J 5x2(dx)? — 5 x?dx + (10x — 10) as

represents an integration

= sxt 5 + 10 10
“12 3 x
. 1 1
P.l. correspondlng to cosx = Em COoS x
1 1
T 1(=1+D+ 1D ¥
1 .
= D COSX = Sinx

V3

2 2
Hencey = A + Bx + e™*/2 (Ccos7x+Dsin§x) +51i2—5%+ 10x — 10 — sinx.

Exercises:

1. Solve (D? = 5D+ 6)y = e**
2. Solve (3D? +D — 14)y = 13e%**
3. Solve (D? —4D —5)y = e3* + 4 cos 3x

Unit 111
Linear equations of second order: Complete solution in terms of a known integral — Reduction

to normal form — Change of independent variable - Applications of first order equations: Flow
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of water from an orifice — Falling bodies and other rate problems, Free fall under gravity — The
Brachistochrone — Fermat and Bernoulli — Simple electric circuits.
Chapter 3: Sections —3.1 - 3.6

Linear Equations of the Second Order
3.1. Complete solution given a known integral.
If an integral included in the complementary function of the given equation be known, the

complete solution can be found in terms of this known integral.
2y p®y _
Let dx2+de+Qy—R ............. (D)

be the given equation, where P, Q, R are functions of x.

Let y = y,; be a known integral in the C.F. of (1).

. d’y _dy
Le., ofW+Pa+Qy =0

Putting y = y,v in (1), where v is a function of x, we get

d2v+dv(2dy1+1> )—R‘ irtue of (2
yldxz T \% dx v, | = R in virtue of (2).

.. . .od
This is linear in é; hence

% =;—i2e-f Pax 4 }{;dxf Ry, e/ Pdxdx
Integrating,
o—J Pax o—J Pdx
v=oc,+ clf " dx +f { 7 f Ry, e/ P"l"dx}dx

The solution of (1) is y = vy;, where v has the above value.

It must be noted that this solution includes the given solution and that there are two arbitrary
constants.

Note:

Some cases where in simple functions of x, like x and e* are integrals of the equation
2
P, % +P % + P,y = 0 should be noted.

Thus for the above equation

y=x,y=eX,y=e* andy = x?
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are solution if
P1 + Pox = O, Pz + P1 + PO = O, Pz - P1 + PO =0 2P2 + 2P1x + Poxz =0 rESpE‘CtIVE|y

Example 1:
Y op— 1Y C 1)y = eX
Solve x a2 (2x —1) T (x =1y =e¢e"

Solution:

4’y 2 1 dy+ Dy =e¢e*

As the sum of the coefficients of the first member is zero, e is a solution of
ay _ 4y _ -
x (2x —1) o T (x—1y=0.
. _ x (i dv | dv _
Putting y = ve¥, (i) reduces to xﬁ to= 1.
Solvmg,—x—x+61 ie., e 1+
Integrating p = x + cllogx + c,.
Hence y = e*(x + c;logx + ¢;).
Example 2:
Solvexd — (x? + 2x) y+(x+2)y—xe

Solution:

y = x is a solution of this equation without the second member, Putting y = vx, it reduces to
v, — v, =e*.

Hence v,e™ = x + ¢, or vy, = (x + ¢y)e”.

Integrating = (¢; — 1)e* + xe* + c,.

~y =cx + (c; — Dxe* + x%e”

3.2. Reduction to the normal form:

Con3|der =2+ de +Qy=R ... (1)

Putting y = y, v, this becomes

d>v dv/_dy, d?y, dy,
gt (e ) ( :

If v, be chosen to satisfy 2 =2 yl L+ Py; = 0.

1[ pdx

2
2 % then the above equation becomes % +Iv = Pez

e,y =e 2
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(2) is immediately integrable if I be either a constant or ;iz where a is a constant.

This method is either called reducing (1) to the normal form or removing the first derivative.
Example 1:

Solve y, — 4xy; + (4x2 —3)y = eZ".

Solution:

y, — 4xy, + (4x% — 3)y = e?’.

Here P = —4x,Q = 4x2 —3and P = e*’

— e—%f Pdz _ ,x?

X

Y1 e

Puttingy = vy, I =Q—-——— -1

and the equation reduces to % —v=1.
Hence v = Ae* + Be™ — 1

wy=e* (de¥ + Be™* — 1)

Example 2:

2
4x23—y+4x5d—y+ (x® +6x*+4)y = 0.

x2 dx

Solution:

2
4x2%+4x52—z+ (x® +6x*+4)y = 0.

Divided by x?
a’y 34y 6 2,4\, =
4-5+4x dx+(x + 6x +x2)y—0.

—v3.n0—_1( 6 24 4
HereP—x,Q—4(x + 6x +x2)

_1dP P21
2dx 4 x?
Hence the equation in v, where y = vy, is
d>v 1
axz v =0

This is a homogeneous linear equation whose solution is
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V3
Vx Acos (710gx + B)

2
change of the independent variable

x* \3
~y=e 8+/x Acos <—logx + B)

3.3. Change of the independent variable:

Let z be the new independent variable.

Con3|der +de+ Qv =R

dy _dy dz % _ d’y(dr\’  dyd’z

dx dz dx’dx?  dz? (dx) dzdx% ~TCTCTTUTTY (1)
The equation (1) transforms into

d%y (dz\? . dy B
Dy (&) + 2 (L2 pLE) 1 Qy =R .......... 2)
We may choose z such that the coefficient of Z—Z

ie, — d’z -+ P— vanishes. ~ z= [ e JP¥dx ... .. (3)

Usmg this value of z, (2) may be come integrable. One particular case where (2) becomes

2
immediately integrable is when Q = u (Z—i) , Where u is a constant. Then (2) reduces to

dzy R
dz? Ty = dz\?
(@)
The second case, when (2) becomes integrable, is when
dz\>
Qz* = (dx)

Then (2) becomes a homogeneous linear equation.

Example 1:
Solve — + —tanx + ycos? x = 0.
Solution:
+ tanx + ycos?x = 0.
Here P = tan x and Q = cos? x.
Choosing z as in (3),z = [ ef ~tanxdx gy = sin x.

2
The equation transforms to 3732’ +y = 0 as here
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2
Q= cos?x = (%>
dx

~ y = Acosz + Bsinz
= Acos(sin x) + Bsin(sin x)

Example 2:
Solve: d?y  3x+1dy { 6(x+1) }2 ~0
" odx?  x2-1dx (x—1)(3x+5)

Solution:
2

d?y 3x+1dy+ { 6(x+1) }_0
dx?2 x2—1dx  lx=-DG@Bx+5))

Using the notation of (3), if z be the new independent variable, the equation becomes

d%y (dz>2 dy {dzz dz

az\ax) T w“’a}*‘”:o
HereP=—3x+1andQ={ 6(x+1) }2
x? -1 (x—1)(Bx-5)) °
~d’z dz(Bx+1)
‘o dx -1
dz i 3x+1
Ifz, = Ix integrating logz; = f ﬁdx +C

—f( Lot )dxte
B x—1 x+1 x
= 2log(x — 1) +log(x + 1) + logA.

w2y = A(x — 1)%(x + 1). We can take
z; =x—1)%(x + 1).
vz = f (x — 13(x + 1)dx
(x—1)3(3x+5)

= neglecting the constant of integration.

12

d>
The transformed equation is adlt Qy

dz? 2
© (@
d?y 36y

.€. - =0
“ dz2 " (x— 1)°(3x + 5)2
. d¥y oy

=0

i

oo 4Zz—+y:

Putu =logzand D = <
du
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[4D(D— 1)+ 1]y =0 ie., (2D—1)%y =0
~y=e%?( A+ Bu)
(x —1)3(2x +5)
12

= /z( A + Blogz) where z =

Applications of First Order Equations:

3.4. Growth, Decay and Chemical Reactions:

When a molecule has a tendency to decompose naturally into smaller molecules at a rate not
depending on the presence of other substances, then the number of molecules of this kind
decomposing in a unit time will be proportional to the total number present. A chemical
reaction of this type is called a first order reaction.

Let, at t = 0, x, grams of matter be present and decompose in a first order reaction. If x grams.

of matter be present at time t, the above principleleads us to the differential equation.

dx

Z = —kx(k>0) oo (1)

Separating the variables, we get ‘i—x = —kdt.

Integrating, logx = —kt + c.

The initial conditions are t = 0,x = x,.
~ logx, = c.

Hence logx = —kt + logx,

= log— = —kt or x = xpe ¥t
g— = or x = xqe

X0
The positive constant k is called the rate constant for it measures the rate at which
decomposition takes place.
An example of the above type of reaction is radioactive decay. It is usual to express the rate of
decay in terms of its half-life, i.e., the time required for a given quantity of element to decrease
by one-half. If in (2) we put x = x—z" the half-life, T is given by %" =xoe *T ie., kT =log2.
If k or T is known by observation, the other is determined by this equation.
These ideas are fundamental in Geology or Archaeology. Radioactive elements occurring in
nature with known half-lives can be used to fix dates for events occurring long ago.
Second-order reaction. Let two chemical substances in solution react together to form a
compound. If the reaction is generated by the collision and interaction of the molecules of the

substances, the rate of formation of the compound is jointly proportional to the amounts of
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substances that are untransformed. A chemical

r’eaction of this type is called a second-order
reaction and this law of reaction is called the law of mass action.

Let us consider a second-order reaction in which x grams of the compound contain ax grams
of the first substance and bx grams of the second, where a + b = 1. If initially there be a A
and b B grams of the first and second substances initially and if x = 0 when time t = 0, we
shall find x as a function of ¢.

The law of mass action gives us the equation

dx
= k(a A—ax)(b B — bx) ...(1)
= kab(A—x)(B—x)

Separating the variables,

dx

AToE g - kebdt

(5= - =) dx = kabat.

A-B \ B—x

Integrating, ﬁlog% = kabt + ﬁlogc (say).

Initial conditions aret = 0,x = 0.

= A
=3
JATx A okabt( A-B)
B—x B
— kabt( A-B)
Let B < A; A+B-2x _ Ae +B

A-B - Aekabt(A-B)_B
(by component do et dividend)

AB[]. — ekabt( A—B)]
=>x =
A — Bekabt(A-B)

If, however A = B, (1) becomes % = kab( A — x)2.

o bt
”(A—x)z_ a .

. 1
Integrating, e kabt + C.
Initially £ = 0,x = 0; - = C.
- L kabt
"A-x A

X _ k Aabt
5> —— = .

(A-xn "¢
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s x = kAabt(A — x)

_ k A%abt
¥ =11k Aabt
Example 1:

(1) Suppose that x, bacteria are placed in a nutrient solution at time ¢t = 0, and that x is the
population of the colony at a later time t. If food and living space are unlimited and if, as a
consequention at any moment is increasing at a rate proportional to the popultion at the

moment, find x as a function of t.

(ii) I, in (i) space is limited and food is supplied at a constant rate, then competition for food

and space will act in such a way that ultimately the population will stabilize at a constant

level x;. Assume that under these conditions the population grows at a rate jointly

proportional to x and to the difference x, — x, find x as a function of t.

(i) The differential equation, in the above case, is % = kx.

Separating the variables, C;—x = kdkt.
Integrating, log x = kt + c.

Initial conditions ;t = 0, x = x,.

~ logx, = c.

Hence log —~ = kt or x = xoe*".
0

(ii) The differential equation, in this case is Z—’; = kx(x; — x).

. . dx
Separating the variables, o kdt
) dx (1 1
Le., —(— > = kdt
x1 X x1 — X

Integrating, logxx—x = kx,t + logC.
-

Initially,t = 0; x = x,.

X0 X0
= log C whence C =

X1~ Xo X1~ Xo

X X
Hence = 0 pXxikt
X1—X X1—Xg

:.]og

XoX1
xo+(x1—x0)ek¥1t’

Solving for x, x =
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Example 2:

If, in a culture of yeast, the active ferment doubles itself in three hours, by what ratio will it
increase in 15 hours, on the assumption that the quantity increases at a rate proportional to
itself?

Solution:
Let the amount of yeast at time t be x. Since the rate of increase varies as itself, we have Z—’: =

kx, where k is a constant.

. dx
re., — = kdt
X

~ logx = kt + log C, where C is an arbitrary constant.
Y ox = Cekt

If the amount of yeast at time t = 0 is x,,, then the amount of yeastat t = 3 is 2x,,.

Hence x, = c and 2x, = ce3* = x,e3*.

~ ek =2 je. ek =21/3

Hence x = x,2%/3.

The amount of yeast at 15 hours is x,25 = 32x,.

Hence in 15 hours, it multiplies itself 32 times.

Example 3:

The rate at which one substance combines with another is supposed to be proportional to the
amount of the first substance remaining. If there be 15 grams of the first substance when t =
0 and 5 grams when t = 8 seconds, find how much will be left when t = 5 seconds. Also
find the value of t when there is one gram left.

Solution:

Let the weight of the first substance be x grams at time t.

We are given x = 15whent = 0 and x = 5 when t = 8.

dx
— = —kx, where k > 0
dt
dx
o — = —kdt
X

Integrating, logx = —kt + logC

ie., x = Ce k¢
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Whent =0,x =15 ~ 15 = Ce %0 .. C = 15.

1/8
Whent =8,x=5.~5=15¢7k® . ¢~k = (l)

3
x=15(3)
O 3

5/8
Whent =5,x = 15 (%) = 5(3)3/8 grams.

t/8

o \t/8
When x = 1,tisgivenby 1 = 15( )

3
A |
5 =1

. t
ie., —glog3 = —log15

log 15
= 8( ) seconds.
log3

Example 4:

A hot body cools in air at a rate proportional to the difference between the temperature of the

body and that of the surrounding air. If the air is maintained at 20°C. and that of the body cools

from 100°C. to 75°C. in 10 minutes, when will its temperature be 25°C.? What will be its

temperature in half an hour since it started cooling from 100°C.?
Solution:

Let the temperature of the body at time ¢t minutes be 6°C. Then,
a6 _ k(@ —20)(k>0

ie. % — kat.

20

Integrating. log(6 — 20) = kt + log A.

i.e.,, 8 — 20 = Ae*t, k being an arbitrary constant.
Whent = 0,0 = 100. When t = 10,6 = 75.

~ 100 —-20 = A = 80.

~ 6 —20=80ek.

1/10
75 — 20 = 80e1% je. ek = (E) ,
16

-~ The relation between 8 and ¢t becomes

13 £/10

6 —20=80(—
(16)
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t/10
When 6 = 25,5 = 80 (%)

) 1 _(11)
“16 \16

t
= —logl6 = 10 (log11 —log16)

t/10

log 16

——————— minutes.
log16-log 11

= t=10
30/10
When t = 30,6 — 20 = 80(1—2)

3

- 9—20+80(11>
R 16

= 46°C. (approx.)
Example 5:

A tank contains 1,000 litres of brine in which 400 grams of salt are dissolved. Fresh water runs

into the tank at the rate of 8 litres per minute and the mixture (kept uniform by continuous

stirring runs out at the same rate). How long will it be before only 200 grams of salt are left in

the tank?

Let the amount of salt in the tank at t minutes be x grams

Hence the amount of salt in the tank at time t 4+ At minutes is (x + Ax) grams.

The amount of salt coming into the tank (i.e., input) during At time = 0 as fresh water only is

let in.
Output (i.e., the amount of salt going out of the tank) during At time = 1i%At.
Ax = 8x At i Ax_ X
¥ 7100070 A T T 125

Taking the limit as At — 0, we have & = — X,
dt 125

Separating the variables, dx _ _ 4t
X 125

. t
Le., logx = 175 +logC

or x = Ce™t/125

Initial conditions are t = 0, x = 400.- 400 = C.
Hence x = 400e~t/125

We are required to find t when x = 200.

. 200 = 400e7t/125
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> _Fts = log%, i.e.,, t = 125(log, 2) minutes.
Example 6:

A tank contains 100 litres of fresh water. 2 litres per minute of brine, run in, each containing
1 gram of salt and the mixture runs out at 1 litre per minute. Find the amount of salt present
when the tank contains 150 litres of water.

Solution:

Let the amount of brine the tank at time t = 100 + ¢ litres.

Input in At time after time t = 2At.

Output in At time after time t = At

100+t

~ Accumulation = Input - output

Le., Ax = 2At — At

100+t
Ax X

n—=2—
At 100+t
Proceeding to the limit when At — 0,

dx_ x ) dx+ X =5
dt T 100+¢ "% dr T100+¢

This is linear in x.

dt
o LF. = el oot = ¢108100+0) = 100 4 ¢,

~ x(100 +t) = [ 2(100 + t)dt + C = (100 + t)? + C.
Initially t = 0,x = 0.
~» 0 =100% + C whence C = —1002.

Xy = (100+t)2-100%2 _ t(200+t)
100+t 100+t

When thetank contains 150 litresofbrine, t = 50, since the tank contains 100 litres of fresh

water at t = 0 and the accumulation per minute in the tank is one litre.

Hence whent = 50,x = 50(200450) _ g31 grams.
100+50 3

Example 7:

A moth ball whose radius was originallyi cm. is found to have a radius é cm. after 1 month.

Assuming that it evaporates at a rate proportional to its surface, find the radius as a function of
time. After what time will it disappear altogether?

Solution:
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Let rcms. be the radius at time ¢ months from start. Then the volume of the ball is Vcu. cm. =

4
Enr3 and surface area = 4mr? sq.cm.

By the condition of the problem

W _ kdS(k > 0

dr
& 4nr? — = —k4nr?, ie., dr = —kdt.

dt

Integrating = —kt + ¢

.- 1 1
Initiallyt = 0,7 = S omsc=-cm == kt.

4

Whent =1,r =% cm. = k =é.

Hence r =

1 2—t
—=t=—cm.
8 8

=

r = 0 when t = 2 months.

After one more month, the moth ball disappears completely.

Exercises 1:

1.

A certain radioactive salt decomposes at a rate proportional to the amount present at
any instant. How much of the salt will be left 300 years hence if 500 mg. that was set
aside 50 years ago has been reduced to 450 mg?

If the number of bacteria in a quart of milk doubles in four hours, in how much time
will the number be multiplied by 4 ? bacteria present.

The amount x of a substance present in a certain chemical reaction after time t is
given by% = k(a —x)(b — x), where k, a, b, are constants and x is zero at t = 0. If

x = 3 when t = 10 minutes, find the value of x after 20 minutes when a = 6 and b =
9. What does this solution reduce to whena = b ?

The rate at which two chemical substances are combining is proportional to the
amount of the first substance remaining unchanged. If initially there are 20 grams of
this substance and two hours later there are only 10 grams, find how much of the
substance will be left at the end of four hours?

Assuming that a hot body cools in air at a rate proportional to the difference between
the temperature of the body and that of the surrounding air, find the temperature of the
body after 30 minutes, if its initial temperature be 100°C. and its temperature after 10

minutes was 75°C., the temperature of the air remaining steady at 20°C.

77

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.


http://sq.cm/

3.5. Flow of water from an orifice:

A vertical tank of uniform cross-section A is filled with water to an initial height h,. Water
flows out through a hole of area a. Find the height of the water h in the tank as a function of
the time t.

The volume of water flowing out in time dt is a vdt, where v is the velocity of water at the

orifice at time t. The loss of the height in the tank is dh; hence the loss of the volume is Adh.

~ avdt = —Adh
) Adh B
ie., T av.

But the velocity is related to the height by Torricelli's law,

e, v=cy2gh
The empirical constant ¢ would be unity if there were no obstruction and no " vena contracta”

near the orifice; for ordinary holes with sharp edges it is 0.6 .
dh

AE = —0.6a./2gh.

Examples.

Find the time required to empty a cylindrical tank 1 metre in diameter and 4 metres long
through a hole 5 cm. diameter if the tank is initially full and its axis is (a) vertical, and
(b)horizontal.

(a) The axis of the tank is vertical.

dh
AE = —0.6a,/2gh.

1
Here A =1 - 2 Sa. metres

_ (5)2_25
a=m > —47qu.cm.

25
YT 1002 = —0.677'[1/2(981}1)

h
= i —14.8Vh (approx.)

ah 14.8dt
N .

Integrating2 vh = —14.8t + C.
Whent = 0,h = 400 cm. -~ 40 = C.
o~ 2vh =40—14.8, ie.,Vh =20 — 7.4¢t.

If t; be the time required for emptying the tank, h = 0,t = t;.
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20

Hence t; = — = 2.7 seconds (approx.)

(b) The axis of the tank is horizontal.
Let the height of the water level at time t seconds be h metres.
Then A is rectangle with

length 4 metres and breadth 2vh — h? metres.
- 8Vh—h? 21002 = —0.6m=210,/2(981h).
dh 1.5
1—h—-= —3—2,/2(981)n
ina 2(1— p)3/2 =212
Integrating ; (1= h)*/* = - V2(981)mt + C.
Whent =0,h =1 metre. .. C = 0.

Hence (1 — h)3/? = % 218mt.

When h = 0,t seconds = 1.25 seconds (approx.)

_ 64
"~ 13.5y2187

Exercises 2:

1. Acylindrical tank of radius 10 metres and height 10 metres with its axis vertical is
full of water but has a leak at the bottom. Assuming that water leaks at a rate
proportional to the depth of the water in the tank and that 10 per cent escapes during
the first hour, find a formula for the volume of water left in the tank after ¢ hours.

2. A hemispherical bowl of radius R is initially full of water and a small circular hole of
radius r is punched in the bottom at time t = 0. How long will the bnwI take to empty
itself? (Assume Torricelli's law.)

3. Find the time required for a square tank of side 5 metres and depth 10 metres to empty
through a circular hole of diameter 5 cm . at the bottom.

4. Into atank 4 ft . deep with base 10 ft . square water flows at the rate of 24 cu . ft. per
minute. Find the time required to fill the tank if at the same time the water leaks out
through a circular hole of diameter 2 inches at the bottom.

5. Two open tanks with identical small holes in the bottom drain in the same time. One
is a cylinder with vertical axis and the other is a cone with vertex down. If they have

equal bases and the height of the cylinder is h, what is the height of the cone?
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3.6. Falling bodies and other rate problems:

Free fall under gravity. If y be the distance through which a body falls freely in time t, its
equation of motion is ‘:Tf =g.

On integration, we get the velocity v = Z—f =gt+c.

Suppose, initially, at t = 0, v = v,

Thenv, = c.
dy
- v=E=gt+v0

. th
Integrating y = - tuvttec

If,att = 0,y = y,, we have y, = c.
gt?
vy =T+U0t+y0

If the body falls from rest starting from y = 0, then
2

Vo =y, = 0 and hence v = gt and y ng
Eliminating t, v = /2gy.

This is a direct deduction from the Principle of conservation of energy, viz., Kinetic energy +
Potential energy = Constant.

8 3.2. Retarded fall. Assuming that air exerts a resistance proportional to the velocity, the

differential equation of motion is

d?y dy .
m—s=mg - k; ('m being the mass of the body ).
dy d k k
lfweputv ==~ =g ——v=g—Lv,whereL =—.

Separating the variables, 2 — gt
g-Lv
Integrating, —iLlog(g — Lv) =t + ¢, ¢ being an arbitrary constant.

If we take the initial conditions v = 0 when ¢t = 0,

11 B
—logg=c.
9 _
Llogg—Lv_t
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ASL>O,Whent—>00,v—>gL.

This limiting value of v is called Limiting or Terminal velocity.

From (1), ‘;—Jt’ = %(1 — e Lty

—-Lt
) e
Ly = L<t+ L>+c
g

Takingy = 0whent =0,c = 1z

_9(ppet 1
Hence y = L(t+l . L)
Example 1:

If the air resistance on a falling body of mass m exerts a retarding force proportional to the
square of the velocity, the equation of motion is % = g — cv?, where ¢ = % If v = 0 when

t = 0, find v as a function of t. What is the terminal velocity?
The equation of motion is

d?y y (dy>2
Mz =™ dt

. d k . d
Putting d—f = vand ¢ = —, it becomes d—: =g — cv?

) dv _d dv - cd
S tor_g—_vz—ct

"

C

9"~

1/2
Integrating, %(g) log

arbitrary constant.
Initiallyt = 0 and v = 0.0 = A.

(&) +v
logl/—2 = 2,/gct
AN
(o) -
) Eggl/z i = eVoct
< -V
c

v e2Vget _ 1
)1/2 = o2VTe 4 1 = tanh(/gct)

(¢

81

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



1/2
When t — oo, v — (%) ,1.e., the terminal velocity. Ex.2. Inside the earth, the force of

gravity is proportional to

the distance from the center. If a hole be drilled from pole to

pole and a rock is dropped in the hole pole and a rock is dropped in the hole, with what
velocity will it reach

the centre?

2
At distance x from the centre of the earth, the acceleration is % and it varies as x
2
=~ The equation of motion is % = —ux(u > 0).
If the velocity be v = d—x, it becomes v & = —Ux.
dt dx

2 2
Integrating, =~ = — £+ C.
At the surface of the earth, x = R (radius of the earth) and v = 0.

LS
)

Hence v? = u(R? — x2)

At the centre of the earth, x = 0,v = \/uR

-~ C

2
To determine u, we note that at the surface of the earth, x = R and % in magnitude is g.
~pR=g

1/2
Hence, from (1), v = R (5)

R
= JoF
Exercises 3:

1. Atorpedo is travelling at a speed of 60 km /hour at the moment it runs out of fuel. If
the water resists its motion with a force proportional to the speed and if 1 km. of
travel reduces its speed to 30 km /hour, how far will it coast?

2. If the retardation caused by the resistance to the motion of a train is a + bv?, where v

is the velocity, show that it will come to rest from velocity v in a distance
1 bv?
Elog (1 + T)
3. The acceleration of a moving particle being proportional to the cube of the velocity

and negative, find the distance passed over in time t, theinitial velocitybeing v, and

thedistancebeingmeasured from the position of the particle at time t = 0.
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4. If a projectile fired upward from the surface of the earth is to keep travelling

indefinitely in space, show that its initial velocity
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UNIT IV:

Partial differential equation: Formation of PDE by Eliminating arbitrary constants and
arbitrary functions — Complete integral —Singular integral — General integral — Lagrange’s
Linear Equations.

Chapter 4: Sections—4.1to 4.4

Partial Differential Equations of the First Order:

4.1. Introduction:

We now consider equations in which the number of independent variables is two or more and only
one independent variable. We usually denote this by z and the independent variables by x and y if

there be two, if there be n independent variables, we shall call them x,, x,, x5 ... ... Xy. The partial

sz s L 5z & 5
derivatives ==, <= are denoted by p and q while, in the latter case — , — ,.....— are represented
5x ' 8y 6x1 6xy Sxn

by p1, D2 e - pr, respectively.

Partial differential equations are those which involve one or more partial derivatives. The order
of a partial differential equation is determined by the highest order of the partial derivative
occurring in it. We consider only partial differential equations of the first order.

4.2. Classification of Integrals:

Let the partial differential equation be

Fx,y,z,p,q=0 ............ (1)

Let the solution of this be ¢(x,y,z,a,b) =0 ........... 2

Where a and b are arbitrary constants.

The solution (2) which contains as many arbitrary constants as there are independent
variables is called the complete integral of (1).

A particular integral of (1) is that got by giving particular values to a and b in (2)

Singular Integral:

The eliminant of a and b between

¢(x,y,z,a,b) =0

5¢ _ 5o _

e 0 and 55 = 0

When it exists, is called the singular integral.

Geometrically, this includes the envelope of the two parameter surfaces represented by the

complete integral (2) of (1). The two parameters occurring in (2) are a and b.
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The locus of all points whose coordinates with t

is the doubly infinite system of surfaces represented by(2).As the envelope of these surfaces
touches at each point one member of the system (2) the coordinates of any point of the envelope
and the associated p and q satisfy (1) and is thus a solution of (1). This is a singular solution
as we cannot deduce this from (2) by giving any values of a and b.

General integral.

In(2), we shall assume an arbitrary relation between a and b of the form b = f(a).

Then (2) becomes ¢[x,y,z,a, f(a)] = 0.

Differentiating this partially with respect to a,

ép 8¢ .,
EJ“E”“)_O

The eliminant of a between these two equations is called the general integral of (1).

The above two equations represent a curve, viz., the curve of intersection of two consecutive
surfaces of the system ¢{x,y,z, a, f(a)} = 0 for a particular value of a. The envelope of the
family of the surfaces touches them along this curve, which is called the characteristic of the
envelope. Thus the general integral represents the envelope of a family of surfaces, considered
as composed of its characteristics.

Note.

When the singular integral is formed, it is necessary to verify whether the eliminant of a and b

between
d¢ 6¢ :
¢ = O'E = 0 and 3 0 satisfies (1).

As in (2), this eliminant may include extraneous loci such as locus of conical points and
double lines which are not solutions in general of (1)

4.3. Derivation of partial differential equations:

Partial differential equations can be derived either by the elimination of (1) arbitrary
constants from a relation between x, y, z or (ii) of arbitrary functions of these variables.
1. By elimination of constants:

Letp(x,y,z,a,b) =0 ........... (1)

be a relation between x, y, z involving two arbitrary constants and b.

Differentiating (1) with respect to x and y partially, we get

8¢

5
g_|_gp_0 ............ 2)
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% +2g=0 ... 3)

Eliminating a and b, we have a partial differential equation of the first order of the form
F(x,y,z,p,q) = 0.

Here the number of constants to be eliminated is equal to the number of independent
variables and an equation of the first order results. If the number of constants to be eliminated
is greater than the number of independent variables, equations of the second and higher
derivatives are deduced.

Example 1:

Eliminate a and b fromz = (x + a)(y + b)

Solution:

z=((x+a)(y+b) ....... (1)

Equation (1) , Differentiating with respect to x and y partially,
p=y+bandgq=x+a

Eliminating a and b, z = pq.

Exercises 1:

x+y

1.Eliminate a and b from + ==1.

2. Eliminate a and b from z = ax + by + a.
3. Eliminate h and k from the relation(x — h)? + (y — k)? + z% = r?
4.Eliminate a and b from
()2z=(ax+y)>+b
(ii) ax? + by? + z? = 1.
2. By elimination of an arbitrary function.
Let u and v be any two functions of x, y, z and be connected by an arbitrary relation
o, v) =0........(1)
By eliminating ¢, we shall form a partial differential equation and show that this is linear,
i.e., of the first degree in p and q.
Differentiating(1) partially with respect to x and y,
6¢)<6u ou > 6q§<6v ov >:0

du \6x E 6v \Ox E
6¢)(6u ou > 6(])(617 ov )—0
sul\sy "5z T \ey T 529) T
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Eliminating % and %, we have

(uy + u,p)(vy + v,q) = (uy, +u,q) (v + v,0)

Su Su

where u, =a,uy =E

, etc.

This equation can be put in the form Pp + Qq = R where

P =u,v, —u,vy,Q = u,v, — u,v, and R = u, v, — u, v, Examples.
Example 1:

Eliminate the arbitrary function from z = f(x? + y?2)

Solution:

z=f(x?+y%) ... (1)

Differentiating(1) partially with respect to x and y,
p=f'(x*+y*)2xandq = f'(x* +y*)2y

Eliminating f'(x? + y?) between the latter two equations

py = gqx.

Example 2:

Eliminate the arbitrary function from f(x? + y? + z2,z2 — 2xy) = 0
Solution:

fx?2+y2+2z%,22=-2xy)=0 ........... (1)

Solving, x2 + y? + z? = F(z?% — 2xy).

Differentiating(1) partially with respect to x and y,

2x +2zp = F'(z2 = 2xy)(2zp — 2y) ........... ()

2y +2zq = F'(z? — 2xy)(2zq — 2x) ....n....... (3)

Dividing (2) by (3) to eliminate F’,

x+zp_zp—y
y+zq_zq—x

orz(p—q)=y—x

Example 3:
Eliminate f and ¢ from the relation z = f(x + ay) + ¢ (x — ay)

Solution:

z=f(x+ay)+d(x—ay) .......... (D

Differentiating (1) partially with respect to x and y,
p=f"(x+ay)+¢' (x—ay) ... (2)
g=af'(x+ay) —ap'(x —ay) .......(3)
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e

Differentiating (2) and (3) again, with respegt to x and y respectively,
ép 6%z

=5 = [t ay) + ¢ (x —ay)
6q 62Z 211 2 NI
and6_y=6_yz=af (x+ay)+a“p"(x —ay)

Hence the resulting equation is  — a?t = 0, where
5%z 5%z

r= % and t = 6_3/2

Exercises 1:

Eliminate the arbitrary functions from

l.z=eVf(x+y).

2.z=(x+y)f(x*—y?)

3.ax+ by +cz=f(x?+y? + z2).

4.z=f(2).

z
5. f(x?2+y%,z—xy) =0

6. f(x+y+2)=xyz

1.z=f(x+y)p(x—y).

10. z = f(y + ax) + x¢p(y + ax).

4.4. Lagrange's method of solving the linear equation:

Consider the equations u = a and v = b, where a and b are arbitrary constants. By

eliminating a and b, we form the differential equations corresponding to them.

¢ ax+ 2 dy + 22 az = 0
and —dx Syy 5,42 =0.

dx dy dz

UyVy, — U Vy  UpUp — UV, Uply — Uy Uy

. dx dy dz
L., —=—=—
P Q R

We have seen that the elimination of the arbitrary function ¢ from ¢ (u, v) = 0 leads to the
linear partial differential equation Pp + Qq = R

Thus Lagrange's method of solving the linear equation Pp + Qg = R is as follows:-
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e

Write down the subsidiary equations d?x = %y = d—RZ. Let the twoindependentintegrals of

theseordinarydifferential equations be u = a and v = b. Then the solution of the given
equation is ¢ (u, v) = 0, where ¢ is an arbitray function.

¢(u,v) = 0 is called the General Integral of Lagrange's linear equation.

Corollary 1:

This method can be extended to the case of the linear equation of n independent variables.
Consider the equation

Pip; + Bps + - Bypp =R

From the subsidiary equations

dx; dx; dx, dz

5T T -
Let n independent integrals of these be

Uy = Aq, Uy = Ay, ... Uy = Ay

Then ¢ (uy, u,, ...u,,) = 0 is a solution of the given equation, where ¢ denotes an arbitrary
function.

Note:

The above relation ¢ (u, v) = 0 or ¢(u, ...u,) = 0 contains all the integrals of the equation
which are not of the type called singular.

Corollary 2:

When either u = a or v = b involves z, it is an integral ofthedifferential equation.

¢(u, v) = 0 can be written as u = f(v), where f is arbitrary. We can take f(v) = av®,
where a is an arbitrary constant; thus the solution reduces to u = a.

Example 1:

Solve y+2z2)p+(z+x)g=x+y.

Solution:

Y+2)p+(zZ+x)g=x+y

The subsidiary equations are

dx dy dz d(X x)
y+z z+x x+y 2Y x

They are also equivalent to
dx—dy dy—dz dz—dx Y dx
y—-x z—-y x—z 2Y X

89

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Taking the first two ratios and integrating, ’;%Z =a.

Taking the first and last ratios and integrating,

(=) x=b

Hence the solution required is

x —
¢ [y _}Z]' (x = Y)ZZX] = 0 where ¢ is arbitrary
Example 2:

Solve px(y? + z) — qy(x? + z) = z(x? — y?).

Find the surface that contains the straight line x + y = 0,z = 1.
Solution:

px(y* +2) — qy(x® + 2) = z(x* — y?)

The subsidiary equations are

dx dy B dz
x(y2+2) —y(x?+2z)  z2(x2-y?)
xdx + ydy
~z(x? = y?)

Hence taking the last two ratios and integrating, x? + y2 =2z + a

The subsidiary equations can also be written as

dx d_y
7 _ y _ dz
y2+z —(x%2+2) z(x*-y?)
dx dy
_xty
- y2 — x2

Taking the last two ratios, ‘i—x + ‘;—y + % =0.

Integrating, log xyz = logh. -~ xyz=0>b

The solution is ¢(x? + y? — 2z,xyz) = 0.
x?2+y%—2z=f(xyz)

(x +y)? —2xy — 2z = f(xyz)

x+y=0,z=1liesonthisif —=2(xy + 1) = f(xy)

o flxyz) = =2(xyz + 1)

=~ The desired integral surface is

x2+y?—2z=-2(xyz+1)
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Example 3:

Determine the surface which satisfies the differential equation (x? — a?)p + (xy —

aztana)q = xz — aycota
and passes through the curve x2 + y2 = a?,z = 0.

The subsidiary equations are

dx dy B dz
x2—a? xy-—aztana xz— aycota
zdy — ydz

a(—z%tana + y?cota)
Yy
(%)

- 2
acota (—tan2 a+ y_2>
z

Taking the first and last ratios and integrating,

y
Y _
X —a tan a

log + logA

= log
x+a }E]+tana

XxX—a y+ztana

rx+a y—ztana_
where A is an arbitrary constant
The subsidiary equations can again be written as
dx dy dz

x2—a? xy-—aztana xz-—aycota
ydycota — zdztan a

~ x(y%cota — z2tan )
Taking the first and the last ratios and integrating,
log(x? — a?) = log(y?cota — z*tan a) + logB
=B o, )

where B is an arbitrary constant.

x%2-q?

y2cota—z2tana

Hence the solution of the given partial differential equation is

x? —a? (x—a y+ztana>
y2cota — z%tana / x+a y—ztana
where f isarbitrary.

If this surface is to pass through the circle
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then

y2cota = —tana=f (i;z)

i.e., f = constant.
Hence the required solution is

x? —a? = —(y%cota — z*tan a)tan «
ie,x?+y?—a%=z%an’a

Example 4:

Find the integral surface of x?p + y2q + z% = 0 whinet passes through the hyperbola xy =
x+yz=1.

Solution:

x’p+y?q+2z2=0

The subsidiary equations are

dx dy dz
X y? -2

Integrating, % + i =g and i + i = b.
= The solution is i + % =f (i + i) where f is arbituary
If this surface is to pass through the hyperbola xy = x + x z = 1, we must have
1+1=fG+1>
x y

Fromxy=x+y,weget1=%+§.

1 1 1
a1+—=2——=3—@+—>
x y y

cre)=a-(14d)

Hence the required surface is

1 1 1 1
—+-=3- (-4 )
zZ X y z
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UNIT V:

Special methods — Standard forms.
Chapter 5: Sections: 5.1-5.5

5. Special methods and Standard forms:

5.1. Standard I:

Equations, in which the variables do not occur explicitly, can be written in the form

F(p,q) = 0.

A solution of this is z = ax + by + ¢, where a and b are con. nected by F(a, b) = 0. Solving
this for b, b = f(a).

Hence the complete integral is

z=ax+yf(a)+c

The singular integral is obtained by eliminating a and ¢ between

z=ax+yf(a)+c

0=x+yf'(@)
0=1.

The last equation is absurd and shows that there is not singular integral in the case.
To obtain the general integral, we assume an arbitrary relation ¢ = ¢(a). Then
z=ax+yf(a)+ ¢(a).

Differentiating partially with respect to a,

0=x+yf'(a) +¢'(a).

The eliminant of a between these equations is the general integral.

Note:

The singular and general integrals must be indicated in every equation be sides the complete
integral. Then only the equation besides is said to be the completely solved.
Example 1:

p* +q* = npq.

Solution:

Let the solution be z = ax + by + c, where

a? + b? = nab.

a(ni n2-4)
E—

Solving, b =

- The complete integral is z = ax + 2> (n £ Vn? — 4) +c.
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Differentiating partially with respect to ¢, we find that there is nosingular integral, as we get

an absurd result.

To find the general integral, put ¢ = f(a).

z=ax+az—y(n+ n2—4)+f(a)

Differentiating partially with respect to a,

O=x+%(n+ n2—4)+f’(a).

The eliminant of a between the equations is the general integral.
Example 2:
Prove that the characteristics of g = 3p? that pass through the point (—1,0,0) generate the
cone (x + 1)? + 12yz = 0.
Solution:
Let the complete integral of g = 3p? be z = ax + by + ¢ where b = 3a?. Hence it is z =
ax + 3a’y + c.
The general integral is the locus of all characteristics.
To find the general integral, let us put ¢ = f(a).
Then z = ax + 3a?y + f(a).
If this passes through (—1,0,0), f(a) = a.
The complete integral is z = a(x + 1) + 3a?y.
Differentiating partially with respectto a, 0 = x + 1 + 6ay.
Eliminating a, the locus of the characteristics is the cone
(x+1)2+12yz=0
Exercise 1:
Solve the following equations:
1. pg=k.

2. 3p*—2q° = 4pq
3. pP+q* =4
4. pq+p+q=0.
5. ¢ —-3q+p=2.
6. Obtain the complete integral of p? + g2 = ¢? in the form

z = cxcos a + cysin a + b and show that z? = c%(x? + y?) is a particular case of

ageneralintegral.

94

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



7. Jp+g=1

5.2. Standard I1:

Only one of the variables x, y, z explicitly. Such equations can be written in one of the forms

F(x,p,q) = 0;F(y,p,q) = 0;F(z,p,q) =0
(i) Let us consider the form F(x,p,q) = 0.

Since z is a function of x and y

dz = Fp dx + @ dy

= pdx + qdy
Let us assume that g = a.
The equation becomes F(x,p,a) = 0.
Solving this for p, we get p = ¢ (x, a).
~dz = ¢(x,a)dx + ady.

:-zzf ¢(x,a)dx + ay + b.

This contains two arbitrary constants a and b and hence it is a completeintegral.

(ii) Let us consider the form F(y,p,q) = 0.

Let us assume that p = a.

~ F(y,a,q) = 0.
~q=¢W,a).

Hence dz = adx + ¢(y,a)dy.

~z=ax+ [ ¢(y,a)dy + b which is a complete integral.
(iii) Let us consider the equation F(z,p,q) = 0.

Let us assume that g = ap.

Then this equation becomes F(z,p,ap) = 0

Le,p=¢(z,a)
Hence dz = ¢(z,a)dx + ap(z, a)dy
ie., i =dx + ady
¢(z,a)
ie., [ % = x + ay + b which is a complete integral.
Example 1:

Solve (i) g = xp + p?
(i) p = ¥*q*
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(i) p(1 + ¢*) = q(z - 1).
Solution:

() g = xp +p?
Letq =a.Thena=xp +p?ie,p?+xp—a=0

—x +Vx2+ 4a
2

.’.p =

Hence dz = =24 5y 4 ady

—x £ Vx?% +4a
nZ= > dx+ay+b

x?
—7 T {\/4a+x + a sinh~ (

(i) p = y*q*.

\/_)}+ay+b

Letp = a?. Thengq i%
Hence dz = a%dx + Zdy.

~ z=a’x talogy +b.
(i) p(1 +q*) = q(z - 1).

Let g = ap. Then p(1 + a?p?) = ap(z — 1)

. 1+a’p?=a(z—-1)
) vaz—a-—1
Le.,p= —

Hence dz = + ¥&2~%¢1

dx i a\/az—a—l

dy
adz

Le., + = dx + ady
J@z—-—a-1)

,if =x+ay+b
J@z—-a-1)

e, *2Vvaz—a—-1=x+2y+b
Exercises 2:

Solve:
1.z(p* +q*> + 1) = a?.
2. p* =2z*(1-pq)

3. p(1+ q) = qz. (B.Sc.1994)
4. p(1+4q*) =q(z—a).
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5. pq = z.
6. p=2qx.
5.3. Standard 111:
Equations of the form f; (x,p) = f2(y, q@). In this form the equation is of the first order and
the variables are separable. In this equation z does not appear. We shall assume a tentative
solution that each of these quantities is equal to a.
Solving f;(x,p) = a,p = ¢,(a,x)
Solving f> (v, q) = a,q = ¢, (a,y).
Hence dz = ¢,(a,x)dx + ¢,(a, y)dy.

. zzf ¢1(a,x)dx+f ¢,(a,y)dy +b

which is a complete integral.
Example 1:
Solve the equationp + g = x + y.
We can write the equation in the formp —x =y — ¢
Letp —x =a. Theny —q = a.
Hencep =x+a,q =y —a.

~dz=(x+a)dx+ (y —a)dy

(x+a)? (—a)
z= +
2 2

There is no singular integral and the general integral is found as usual.

+b

Example 2:

q(p —sinx) = cosy

Letp—sinxz%za

. Ccos
~p=a+sinx,q =Ty.

s~ dz = (a+sinx)dx + %dy.

sin
Y +b

S Z=ax —cosx +

Obviously there is no singular integral as partial differentiation with respect to b leads to an
absurd result.

To get the general integral, assume b = f(a) where f is arbitrary.
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Then z = —cosx + ax +

+f(a)

Differentiating with respect to a partially 0 = x —

a

si

=2+ f'(a)
The eliminant of a between (i) and (ii) represents the general integral.
Exercises 3:
Solve
1. p?+q¢*=x—y.
2. y*(p?—1) =x%q?
3. Jp+Ja=vx
4. q = xp+p>
5. pq =xy
6. \/5 + \/6 = 2x
7. pz _ysq =x2—y2
5.4. Standard 1V:
Clairant's form.
Thisis of the form z = px + qy + f(p, q)
The solution of the equation is z = ax + by + f(a, b) equation and g = b can easily be
verified to satisfy the given equation
Example 1:
Solvez=px+qy+\/m

The complete integral is obviously

z=ax+by++1+a?+ b?

To find the singular integral, differentiating partially with respect to a and b

a
x+ =0

b
and y + =0

J (1 + a? + b?2)

Eliminating a and b the singular integral is

x?+yi+z2=1
To find the general integral, assume b = f(a) where f is arbitrary.

Differentiate partially with respect to a and eliminate a between the two equations.
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Exercises 4:
Solve

1. z=px+qy +pq.
2. z=px+qy+2pq.
3. z=px+qy+ g — p and clarify the following integrals of this equation

z=2x+4y,yz=1—xand x? + 4yz = 0.
4. 1-x)p+@2—-y)q=3—1z.

zZ _x,Y
5. o q+p+,/pq.

5.5. Equations reducible to the standard forms:

Many non-linear partial differential equations of the first order do not fall to any of the above
four standard forms. Sometimes however, it is possible to make a change of variable which
will reduce a given equation to one of the above four forms.

(i) If (x™p ) and (y™q) occur in the partial differential equation as in F(x™p,y™q) = 0 or in
F(z,x™p,y"q) = 0.

(@Putx!™ =Xandy'™™ =Yifm=#1n=+1

0z 0z0X 0z

—_ - _ 7 _ = _ -m
P =3 T 9Xox X LT ™x

C oMy — (1 — )% = (1 — _ 0z
~xMmp=(1 m)ax_(l m)PWhereP—aX.

Similarly y"q = (1 —n)Q, Whereg—i =Q.

Then the equation reduces to F(P,Q) = 0 orto F(z,P,Q) = 0.

(by)ifm=1orn=1.

Putlogx = X;logy =Y.

In that case xp = P,yq = Q.

(i) If ( z¥p ) and ( z*q ) occur in the differential equations as in F(z*p,z¥q) = 0 or in
filx,z*p) = f,(y, z*q).

(@ PutzZ = z**1if k = —1.

2 et = (k4 1)
ax_( )Z ax_( )Zp
1 07

o ko ot
2P T 1ox
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imi kg = L 92
Similarly, z%q = +13y

(b) Ifk=-1,putZ =logz

0Z p
ox z
Example 1:

Solve p? + x?y%q? = x?z?

The equation can be put in the form
p 2
2 _ (&2 2
22=(2) +09)
PutX = x2,Y =logy
dz 0z dz 0z 1

x X oy Tary

Le., §= 2P;yq = Q.

Hence the equation becomes z2 = 4P? + Q2.
This equation is of the form II (iii).

The solution of the equation is

(4 + a?*)(logz)? = (X + aY + b)?

Hence the complete integral is

(4 + a?)(logz)? = (x? + alogy + b)?
Example 2:

Solve p? + g2 = z2(x? + y?).

The equation can be put in the form
P\ (9N s o
(g) + (;) =Xty
. 0z 0z
Putting Z = logz, we get p = Zo4=25

The equation becomes
(62)2 N ((’)Z)Z 2y
0x ay) Ty
ie, P2+ Q% =x%+y?
The solution of the equation is

a? X\ X yy%—a? a? X
— : -1(_ _ 2 2 — -1(_
Z——2 sinh (a)+2 a‘ +x%+ > > cosh (a)+b
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Hence the complete integral is obtained by putti

Example 3:
Solve z*q%? — z?p = 1

The equation can be put in the form (z%q)? — (z%p) = 1.

Putz3 =_Z.
0z 262 0z 2 0z
S— =0z —and — = 5Z° —.
ax 3 dx and ady 3 ady

Hence the given equation reduces to
2
P
5) -()-1
3 3
ie,Q?=3P-9=0
It is of the form F(P,Q) = 0.

Hence its solution is
Z=ax+ by +c,where b? —=3a—9=0
~ b=%+V3a+9
Hence the solution is Z = ax + v3a + 9 + c.
Hence the complete integral is z*> = ax +v/3a + 9 + c.
Example 4:

Solve (%)n + (g)n = z".
Putx? =X,y?=Y,z? =Z.

0z _(z'/?) oX
ox  oX 0x
1 oz

:—Z_l/z._.z
2 ax “*
_x(')Z
70X
. x 1 1 0Z
|.e.,p—z—§—s, WhereP—&.
imi y_1_1 _ 9z
Similarly a2z where Q = e

2|
3

The equation reduces to Pin + é =1.

The complete integral is Z = aX + bY + ¢ where ai" + bin =1

a

i.e., b= W
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Hence the complete integral is

a
2 — 2 2
z°=ax +(an_1)1/ny +c

There is no singular integral, the general integral is got in the usual only.
Exercises 5:

1. x2p? +y%q% = a?

2. x*p*+y%q* =z

3. x%p? + y2q? =22

4. p*+q®=z%(x+y)

5. z2(p*+q*) =x+y
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